ﻻ يوجد ملخص باللغة العربية
A new class of critical points, termed as perpetual points, where acceleration becomes zero but the velocity remains non-zero, are observed in dynamical systems. The velocity at these points is either maximum or minimum or of inflection behavior.These points also show the bifurcation behavior as parameters of the system vary. These perpetual points are useful for locating the hidden oscillating attractors as well as co-existing attractors. Results show that these points are important for better understanding of transient dynamics in the phase space. The existence of these points confirms whether a system is dissipative or not. Various examples are presented, and results are discussed analytically as well as numerically.
Perpetual points (PPs) are special critical points for which the magnitude of acceleration describing dynamics drops to zero, while the motion is still possible (stationary points are excluded), e.g. considering the motion of the particle in the pote
We introduce the concepts of perpetual points and periodic perpetual loci in discrete--time systems (maps). The occurrence and analysis of these points/loci are shown and basic examples are considered. We discuss the potential usage and properties of
This report investigates the dynamical stability conjectures of Palis and Smale, and Pugh and Shub from the standpoint of numerical observation and lays the foundation for a stability conjecture. As the dimension of a dissipative dynamical system is
In this paper we analyze Garden-of-Eden (GoE) states and fixed points of monotone, sequential dynamical systems (SDS). For any monotone SDS and fixed update schedule, we identify a particular set of states, each state being either a GoE state or reac
This paper examines the most probable route to chaos in high-dimensional dynamical systems in a very general computational setting. The most probable route to chaos in high-dimensional, discrete-time maps is observed to be a sequence of Neimark-Sacke