ﻻ يوجد ملخص باللغة العربية
Perpetual points (PPs) are special critical points for which the magnitude of acceleration describing dynamics drops to zero, while the motion is still possible (stationary points are excluded), e.g. considering the motion of the particle in the potential field, at perpetual point it has zero acceleration and non-zero velocity. We show that using PPs we can trace all the stable fixed points in the system, and that the structure of trajectories leading from former points to stable equilibria may be similar to orbits obtained from unstable stationary points. Moreover, we argue that the concept of perpetual points may be useful in tracing unexpected attractors (hidden or rare attractors with small basins of attraction). We show potential applicability of this approach by analysing several representative systems of physical significance, including the damped oscillator, pendula and the Henon map. We suggest that perpetual points may be a useful tool for localization of co-existing attractors in dynamical systems.
A new class of critical points, termed as perpetual points, where acceleration becomes zero but the velocity remains non-zero, are observed in dynamical systems. The velocity at these points is either maximum or minimum or of inflection behavior.Thes
We introduce the concepts of perpetual points and periodic perpetual loci in discrete--time systems (maps). The occurrence and analysis of these points/loci are shown and basic examples are considered. We discuss the potential usage and properties of
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic
Recently a new class of critical points, termed as {sl perpetual points}, where acceleration becomes zero but the velocity remains non-zero, is observed in nonlinear dynamical systems. In this work we show whether a transformation also maps the perpe
Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a second, non-chaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. Wha