ﻻ يوجد ملخص باللغة العربية
In the framework of the focusing Nonlinear Schrodinger (NLS) equation we study numerically the nonlinear stage of the modulation instability (MI) of the condensate. As expected, the development of the MI leads to formation of integrable turbulence [V.E. Zakharov, Turbulence in integrable systems, Stud. in Appl. Math. 122, no. 3, 219-234, (2009)]. We study the time evolution of its major characteristics averaged across realizations of initial data - the condensate solution seeded by small random noise with fixed statistical properties. The measured quantities are: (1) wave-action spectrum and spatial correlation function, (2) the probability density function (PDF) of wave amplitudes and their momenta, and (3) kinetic and potential energies.
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically fo
Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrodinger equation is often used to model rogue waves; it is an envelo
Numerical simulations are used to discuss various aspects of optical rogue wave statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral fil
Experimental results describing random, uni-directional, long crested, water waves over non-uniform bathymetry confirm the formation of stable coherent wave packages traveling with almost uniform group velocity. The waves are generated with JONSWAP s
We construct higher order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider