ترغب بنشر مسار تعليمي؟ اضغط هنا

On the statistical interpretation of optical rogue waves

217   0   0.0 ( 0 )
 نشر من قبل John Dudley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical simulations are used to discuss various aspects of optical rogue wave statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral filtering influences the characteristics of the statistical distribution of peak power, and we contrast the statistics of the spectrally filtered SC with the statistics of both the peak power of the most red-shifted soliton in the SC and the maximum peak power across the full temporal field with no spectral selection. For the latter case, we show that the unfiltered statistical distribution can still exhibit a long-tail, but the extreme-events in this case correspond to collisions between solitons of different frequencies. These results confirm the importance of collision dynamics in supercontinuum generation. We also show that the collision-induced events satisfy an extended hydrodynamic definition of rogue wave characteristics.



قيم البحث

اقرأ أيضاً

Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrodinger equation is often used to model rogue waves; it is an envelo pe description of plane waves and admits the so-called Pergerine and Kuznetov-Ma soliton solutions. However, in deep water waves and certain electromagnetic systems where there are two significant transverse dimensions, the 2+1 hyperbolic nonlinear Schrodinger equation is the appropriate wave envelope description. Here we show that these rogue wave solutions suffer from strong transverse instability at long and short frequencies. Moreover, the stability of the Peregrine soliton is found to coincide with that of the background plane wave. These results indicate that, when applicable, transverse dimensions must be taken into account when investigating rogue wave pheneomena.
Random excitation of intense periodic highly-localized single-cycle light pulses in a stochastic background by continuous-wave stimulated Brillouin scattering in long optical fibers with weak feedback is found experimentally. Events with low period n umbers are dominant and the optical feedback is crucial for the phenomenon. A three-wave coupling model for the phenomenon is proposed. The results are in good qualitative agreement with the observed phenomenon. The latter should be relevant to the understanding of similar rogue wave events in other nonlinear dissipative systems.
In the framework of the focusing Nonlinear Schrodinger (NLS) equation we study numerically the nonlinear stage of the modulation instability (MI) of the condensate. As expected, the development of the MI leads to formation of integrable turbulence [V .E. Zakharov, Turbulence in integrable systems, Stud. in Appl. Math. 122, no. 3, 219-234, (2009)]. We study the time evolution of its major characteristics averaged across realizations of initial data - the condensate solution seeded by small random noise with fixed statistical properties. The measured quantities are: (1) wave-action spectrum and spatial correlation function, (2) the probability density function (PDF) of wave amplitudes and their momenta, and (3) kinetic and potential energies.
96 - A. Wang , A. Ludu , Z. Zong 2020
Experimental results describing random, uni-directional, long crested, water waves over non-uniform bathymetry confirm the formation of stable coherent wave packages traveling with almost uniform group velocity. The waves are generated with JONSWAP s pectrum for various steepness, height and constant period. A set of statistical procedures were applied to the experimental data, including the space and time variation of kurtosis, skewness, BFI, Fourier and moving Fourier spectra, and probability distribution of wave heights. Stable wave packages formed out of the random field and traveling over shoals, valleys and slopes were compared with exact solutions of the NLS equation resulting in good matches and demonstrating that these packages are very similar to deep water breathers solutions, surviving over the non-uniform bathymetry. We also present events of formation of rogue waves over those regions where the BFI, kurtosis and skewness coefficients have maximal values.
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically fo cus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrodinger equation. We consider random complex fields having a gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from gaussian statistics are observed in focusing regime while low-tailed deviations from gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum change with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regime, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا