ﻻ يوجد ملخص باللغة العربية
Context: The initial conditions for the gravitational collapse of molecular cloud cores and the subsequent birth of stars are still not well constrained. The characteristic cold temperatures (about 10 K) in such regions require observations at sub-millimetre and longer wavelengths. The Herschel Space Observatory and complementary ground-based observations presented in this paper have the unprecedented potential to reveal the structure and kinematics of a prototypical core region at the onset of stellar birth. Aims: This paper aims to determine the density, temperature, and velocity structure of the star-forming Bok globule CB 17. This isolated region is known to host (at least) two sources at different evolutionary stages: a dense core, SMM1, and a Class I protostar, IRS. Methods: We modeled the cold dust emission maps from 100 micron to 1.2 mm with both a modified blackbody technique to determine the optical depth-weighted line-of-sight temperature and column density and a ray-tracing technique to determine the core temperature and volume density structure. Furthermore, we analysed the kinematics of CB17 using the high-density gas tracer N2H+. Results: From the ray-tracing analysis, we find a temperature in the centre of SMM1 of 10.6 K, a flat density profile with radius 9500 au, and a central volume density of n(H) = 2.3x10^5 cm-3. The velocity structure of the N2H+ observations reveal global rotation with a velocity gradient of 4.3 km/s/pc. Superposed on this rotation signature we find a more complex velocity field, which may be indicative of differential motions within the dense core. Conclusions: SMM is a core in an early evolutionary stage at the verge of being bound, but the question of whether it is a starless or a protostellar core remains unanswered.
(Abriged) In the framework of the Herschel GTKP The earliest phases of star formation, we have imaged B68 between 100 and 500 um. Ancillary (sub)mm data, spectral line maps of the 12/13CO(2-1) transitions as well as a NIR extinction map were added to
Constraining the temperature and density structure of dense molecular cloud cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal FIR dust emission from nearby isolated molecular
To constrain models of high-mass star formation, the Herschel/HOBYS KP aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on
The mid- and far-infrared view on high-mass star formation, in particular with the results from the Herschel space observatory, has shed light on many aspects of massive star formation. However, these continuum studies lack kinematic information. W
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig