ﻻ يوجد ملخص باللغة العربية
The mid- and far-infrared view on high-mass star formation, in particular with the results from the Herschel space observatory, has shed light on many aspects of massive star formation. However, these continuum studies lack kinematic information. We study the kinematics of the molecular gas in high-mass star-forming regions. We complemented the PACS and SPIRE far-infrared data of 16 high-mass star-forming regions from the Herschel key project EPoS with N2H+ molecular line data from the MOPRA and Nobeyama 45m telescope. Using the full N2H+ hyperfine structure, we produced column density, velocity, and linewidth maps. These were correlated with PACS 70micron images and PACS point sources. In addition, we searched for velocity gradients. For several regions, the data suggest that the linewidth on the scale of clumps is dominated by outflows or unresolved velocity gradients. IRDC18454 and G11.11 show two velocity components along several lines of sight. We find that all regions with a diameter larger than 1pc show either velocity gradients or fragment into independent structures with distinct velocities. The velocity profiles of three regions with a smooth gradient are consistent with gas flows along the filament, suggesting accretion flows onto the densest regions. We show that the kinematics of several regions have a significant and complex velocity structure. For three filaments, we suggest that gas flows toward the more massive clumps are present.
In order to distinguish between the various components of massive star forming regions (i.e. infalling, outflowing and rotating gas structures) within our own Galaxy, we require high angular resolution observations which are sensitive to structures o
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum mode
Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which
We are using the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus s
The fraction of star formation that results in bound star clusters is influenced by the density spectrum in which stars are formed and by the response of the stellar structure to gas expulsion. We analyse hydrodynamical simulations of turbulent fragm