ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical signatures of a LCDM-halo and the distribution of the baryons in M33

182   0   0.0 ( 0 )
 نشر من قبل Edvige Corbelli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We map the neutral atomic gas content of M33 using high resolution VLA and GBT observations and fit a tilted ring model to determine the orientation of the extended gaseous disk and its rotation curve. The disk of M33 warps from 8 kpc outwards without substantial change of its inclination with respect to the line of sight. Rotational velocities rise steeply with radius in the inner disk, reaching 100 km/s in 4 kpc, then the rotation curve becomes more perturbed and flatter with velocities as high as 120-130 km/s out to 23 kpc. We derive the stellar mass surface density map of M33s optical disk, via pixel -SED fitting methods based on population synthesis models, which highlights variations in the mass-to-light ratio. The stellar mass surface further out is estimated from deep images of outer disk fields. Stellar and gas maps are then used in the dynamical analysis of the rotation curve to constrain the dark matter distribution which is relevant at all radii. A dark matter halo with a Navarro-Frenk-White density profile in a LCDM cosmology, provides the best fit to the rotation curve for a dark halo concentration C=10 and a total halo mass of 4.3 10^{11}Msun. This imples a baryonic fraction of order 0.02 and the evolutionary history of this galaxy should account for loss of a large fraction of its original baryonic content.



قيم البحث

اقرأ أيضاً

Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on a class of substructure that is purely kinematic in nature, with no accompanying spatial features. To study its properties, we use a simulated stellar halo created by dynamically populating the Via Lactea II high-resolution N-body simulation with stars. A significant fraction of the stars in the inner halo of Via Lactea share a common speed and metallicity, despite the fact that they are spatially diffuse. We argue that this kinematic substructure is a generic feature of tidal debris from older mergers and may explain the detection of radial-velocity substructure in the inner halo made by the Sloan Extension for Galactic Understanding and Exploration. The GAIA satellite, which will provide the proper motions of an unprecedented number of stars, should further characterize the kinematic substructure in the inner halo. Our study of the Via Lactea simulation suggests that the stellar halo can be used to map the speed distribution of the local dark-matter halo, which has important consequences for dark-matter direct-detection experiments.
118 - Till Sawala 2014
The relation between galaxies and dark matter halos is of vital importance for evaluating theoretical predictions of structure formation and galaxy formation physics. We show that the widely used method of abundance matching based on dark matter only simulations fails at the low mass end because two of its underlying assumptions are broken: only a small fraction of low mass (below 10^9.5 solar masses) halos host a visible galaxy, and halos grow at a lower rate due to the effect of baryons. In this regime, reliance on dark matter only simulations for abundance matching is neither accurate nor self-consistent. We find that the reported discrepancy between observational estimates of the halo masses of dwarf galaxies and the values predicted by abundance matching does not point to a failure of LCDM, but simply to a failure to account for baryonic effects. Our results also imply that the Local Group contains only a few hundred observable galaxies in contrast with the thousands of faint dwarfs that abundance matching would suggest. We show how relations derived from abundance matching can be corrected, so that they can be used self-consistently to calibrate models of galaxy formation.
143 - James Aird , Alison L. Coil 2020
It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular cluster systems (for $M_{rm h}$). Our individual estimates of $M_{rm h}$ are based on fitting a dynamical model with a distribution function expressed in terms of action-angle variables and imposing a prior on $M_{rm h}$ from the concentration-mass relation in the standard $Lambda$CDM cosmology. We find that the SHMR for early-type galaxies declines with mass beyond a peak at $M_starsim 5times 10^{10}M_odot$ and $M_{rm h}sim 10^{12}M_odot$ (near the mass of the Milky Way). This result is consistent with the standard SHMR derived by abundance matching for the general population of galaxies, and with previous, less robust derivations of the SHMR for early types. However, it contrasts sharply with the monotonically rising SHMR for late types derived from extended HI rotation curves and the same $Lambda$CDM prior on $M_{rm h}$ as we adopt for early types. The SHMR for massive galaxies varies more or less continuously, from rising to falling, with decreasing disc fraction and decreasing Hubble type. We also show that the different SHMRs for late and early types are consistent with the similar scaling relations between their stellar velocities and masses (Tully-Fisher and Faber-Jackson relations). Differences in the relations between the stellar and halo virial velocities account for the similarity of the scaling relations. We argue that all these empirical findings are natural consequences of a picture in which galactic discs are built mainly by smooth and gradual inflow, regulated by feedback from young stars, while galactic spheroids are built by a cooperation between merging, black-hole fuelling, and feedback from AGNs.
We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of $z sim 1$ using a five-parameter Halo Occupation Distributi on (HOD) parameterization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parameterization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGN) at $z sim 1$. The current work shows that a single HOD parameterization can be used to model the population of different kinds of AGN in dark matter halos suggesting the universality of the relationship between AGN and their host dark matter halos. Our results show that the median halo mass of central quasar hosts increases from optically selected ($4.1^{+0.3}_{-0.4} times 10^{12} ; h^{-1} ; {M_{sun}}$) and infra-red (IR) bright unobscured populations ($6.3^{+6.2}_{-2.3} times 10^{12} ; h^{-1} ; {M_{sun}}$) to obscured quasars ($10.0^{+2.6}_{-3.7} times 10^{12} ; h^{-1} ; {M_{sun}}$), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavor a simple `orientation only theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR- bright obscured phase to the optically bright unobscured phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا