ترغب بنشر مسار تعليمي؟ اضغط هنا

The Halo Occupation Distribution of Obscured Quasars: Revisiting the Unification Model

104   0   0.0 ( 0 )
 نشر من قبل Kaustav Mitra
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of $z sim 1$ using a five-parameter Halo Occupation Distribution (HOD) parameterization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parameterization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGN) at $z sim 1$. The current work shows that a single HOD parameterization can be used to model the population of different kinds of AGN in dark matter halos suggesting the universality of the relationship between AGN and their host dark matter halos. Our results show that the median halo mass of central quasar hosts increases from optically selected ($4.1^{+0.3}_{-0.4} times 10^{12} ; h^{-1} ; {M_{sun}}$) and infra-red (IR) bright unobscured populations ($6.3^{+6.2}_{-2.3} times 10^{12} ; h^{-1} ; {M_{sun}}$) to obscured quasars ($10.0^{+2.6}_{-3.7} times 10^{12} ; h^{-1} ; {M_{sun}}$), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavor a simple `orientation only theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR- bright obscured phase to the optically bright unobscured phase.



قيم البحث

اقرأ أيضاً

We characterise the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as $z sim 1$. Using the Planck Sunyaev-Zeldovich (SZ) catalogue for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar dataset, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of $logleft <Nright> = (2.11 pm 0.01) log (M) -(32.77 pm 0.11)$ can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as $zsim 1$.
The absence of high Eddington ratio, obscured Active Galactic Nuclei (AGN) in local ($zlesssim0.1$) samples of moderate luminosity AGN has generally been explained to result from radiation pressure on the dusty gas governing the level of nuclear ($le sssim10$pc) obscuration. However, very high accretion rates are routinely reported among obscured quasars at higher luminosities, and may require a different feedback mechanism. We compile constraints on obscuration and Eddington ratio for samples of X-ray, optical, infrared, and submm selected AGN at quasar luminosities. Whereas moderate luminosity, obscured AGN in the local universe have a range of lower Eddington ratios ($f_{rm Edd} sim 0.001-0.1$), the most luminous ($L_{rm bol} gtrsim 10^{46} $erg s$^{-1}$) IR/submm-bright, obscured quasars out to $zsim3$ commonly have very high Eddington ratios ($f_{rm Edd} sim 0.1-1$). This apparent lack of radiation pressure feedback in luminous obscured quasars is likely coupled with AGN timescales, such that a higher fraction of luminous obscured quasars are seen due to the short timescale for which quasars are most luminous. Adopting quasar evolutionary scenarios, extended ($sim10^{2-3}$pc) obscuration may work together with the shorter timescales to explain the observed fraction of obscured, luminous quasars, while outflows driven by radiation pressure will slowly clear this material over the AGN lifetime.
72 - Jaehong Park 2015
We investigate the clustering of Lyman-break galaxies (LBGs) at $zsim4$. Using the hierarchical galaxy formation model GALFORM, we predict, for the first time using a semi-analytical model with feedback from active galactic nuclei (AGN), the angular correlation function (ACF) of LBGs and find agreement within $3,sigma$ with new measurements of the ACF from surveys including the Hubble eXtreme Deep Field (XDF) and CANDELS field. Our simulations confirm the conclusion reached using independent models that although the predicted ACFs reproduce the trend of increased clustering with luminosity, the dependence is less strong than observed. We find that for the detection limits of the XDF field central LBGs at $zsim 4$ predominantly reside in haloes of mass $sim 10^{11}-10^{12}h^{-1}M_{rm odot}$ and that satellites reside in larger haloes of mass $sim 10^{12}-10^{13}h^{-1}M_{rm odot}$. The model predicts fewer bright satellite LBGs at $zsim4$ than is inferred from measurements of the ACF at small scales. By analysing the halo occupation distribution (HOD) predicted by the model, we find evidence that AGN feedback affects the HOD of central LBGs in massive haloes. This is a new high-redshift test of this important feedback mechanism. We investigate the effect of photometric errors in the observations on the ACF predictions. We find that the observational uncertainty in the galaxy luminosity reduces the clustering amplitude and that this effect increases towards faint galaxies, particularly on small scales. To compare properties of model with observed LBGs this uncertainty must be considered.
Recent studies have found that obscured quasars cluster more strongly and are thus hosted by dark matter haloes of larger mass than their unobscured counterparts. These results pose a challenge for the simplest unification models, in which obscured o bjects are intrinsically the same as unobscured sources but seen through a dusty line of sight. There is general consensus that a structure like a dusty torus exists, meaning that this intrinsic similarity is likely the case for at least some subset of obscured quasars. However, the larger host halo masses of obscured quasars implies that there is a second obscured population that has an even higher clustering amplitude and typical halo mass. Here, we use simple assumptions about the host halo mass distributions of quasars, along with analytical methods and cosmological $N$-body simulations to isolate the signal from this population. We provide values for the bias and halo mass as a function of the fraction of the non-torus obscured population. Adopting a reasonable value for this fraction of $sim$25% implies a non-torus obscured quasar bias that is much higher than the observed obscured quasar bias, because a large fraction of the obscured population shares the same clustering strength as the unobscured objects. For this non-torus obscured population, we derive a bias of $sim$3, and typical halo masses of $sim3times10^{13}$ M$_{odot}/h$ at $z=1$. These massive haloes are likely the descendants of high-mass unobscured quasars at high redshift, and will evolve into members of galaxy groups at $z=0$.
We analyze the halo occupation distribution (HOD), the probability for a halo of mass M to host a number of subhalos N, and two-point correlation function of galaxy-size dark matter halos using high-resolution dissipationless simulations of the conco rdance flat LCDM model. The halo samples include both the host halos and the subhalos, distinct gravitationally-bound halos within the virialized regions of larger host systems. We find that the first moment of the HOD, <N>(M), has a complicated shape consisting of a step, a shoulder, and a power law high-mass tail. The HOD can be described by a Poisson statistics at high halo masses but becomes sub-Poisson for <N><4. We show that the HOD can be understood as a combination of the probability for a halo of mass M to host a central galaxy and the probability to host a given number Ns of satellite galaxies. The former can be approximated by a step-like function, while the latter can be well approximated by a Poisson distribution, fully specified by its first moment <Ns>(M). We find that <Ns>~M^b with b~1 for a wide range of number densities, redshifts, and different power spectrum normalizations. This formulation provides a simple but accurate model for the halo occupation distribution found in simulations. At z=0, the two-point correlation function (CF) of galactic halos can be well fit by a power law down to ~100/h kpc with an amplitude and slope similar to those of observed galaxies. At redshifts z>~1, we find significant departures from the power-law shape of the CF at small scales. If the deviations are as strong as indicated by our results, the assumption of the single power law often used in observational analyses of high-redshift clustering is likely to bias the estimates of the correlation length and slope of the correlation function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا