ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical expression of Genuine Tripartite Quantum Discord for Symmetrical X-states

275   0   0.0 ( 0 )
 نشر من قبل Andrea Beggi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of classical and quantum correlations in bipartite and multipartite systems is crucial for the development of quantum information theory. Among the quantifiers adopted in tripartite systems, the genuine tripartite quantum discord (GTQD), estimating the amount of quantum correlations shared among all the subsystems, plays a key role since it represents the natural extension of quantum discord used in bipartite systems. In this paper, we derive an analytical expression of GTQD for three-qubit systems characterized by a subclass of symmetrical X-states. Our approach has been tested on both GHZ and maximally mixed states reproducing the expected results. Furthermore, we believe that the procedure here developed constitutes a valid guideline to investigate quantum correlations in form of discord in more general multipartite systems.



قيم البحث

اقرأ أيضاً

154 - Tao Li , Teng Ma , Yaokun Wang 2015
Weak measurement is a new way to manipulate and control quantum systems. Different from projection measurement, weak measurement only makes a small change in status. Applying weak measurement to quantum discord, Singh and Pati proposed a new kind of quantum correlations called super quantum discord (SQD) [Annals of Physics textbf{343},141(2014)]. Unfortunately, the super quantum discord is also difficult to calculate. There are only few explicit formulae about SQD. We derive an analytical formulae of SQD for general X-type two-qubit states, which surpass the conclusion for Werner states and Bell diagonal states. Furthermore, our results reveal more knowledge about the new insight of quantum correlation and give a new way to compare SQD with normal quantum discord. Finally, we analyze its dynamics under nondissipative channels.
Genuine multipartite entanglement plays important roles in quantum information processing. The detection of genuine multipartite entanglement has been long time a challenging problem in the theory of quantum entanglement. We propose a criterion for d etecting genuine tripartite entanglement of arbitrary dimensional tripartite states based on quantum Fisher information. We show that this criterion is more effective for some states in detecting genuine tripartite entanglement by detailed example.
289 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti cal forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
A previously overlooked constraint for the distribution of entanglement in three-qubit systems is exploited for the first time and used to reveal a new genuine tripartite entanglement measure. It is interpreted as the area of a so-called concurrence triangle and is compared with other existing measures. The new measure is found superior to previous attempts for different reasons. A specific example is illustrated to show that two tripartite entanglement measures can be inequivalent due to the high dimensionality of the Hilbert space.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship with that for X states. Thereby in some cases analytical expressions of classical correlations and quantum discord can be obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا