ﻻ يوجد ملخص باللغة العربية
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analytical forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
Quantum discord is a function of density-matrix elements (and through them, e.~g., of temperature, applied fields, time, and so forth). The domain of such a function in the case of two-qubit system with X or centrosymmetric (CS) density matrix can
Weak measurement is a new way to manipulate and control quantum systems. Different from projection measurement, weak measurement only makes a small change in status. Applying weak measurement to quantum discord, Singh and Pati proposed a new kind of
It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their rela
The study of classical and quantum correlations in bipartite and multipartite systems is crucial for the development of quantum information theory. Among the quantifiers adopted in tripartite systems, the genuine tripartite quantum discord (GTQD), es
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neuman