ﻻ يوجد ملخص باللغة العربية
The formation of protostellar discs is severely hampered by magnetic braking, as long as magnetic fields remain frozen in the gas. The latter condition depends on the levels of ionisation that characterise the innermost regions of a collapsing cloud. The chemistry of dense cloud cores and, in particular, the ionisation fraction is largely controlled by cosmic rays. The aim of this paper is to evaluate whether the attenuation of the flux of cosmic rays expected in the regions around a forming protostar is sufficient to decouple the field from the gas, thereby influencing the formation of centrifugally supported disc. We adopted the method developed in a former study to compute the attenuation of the cosmic-ray flux as a function of the column density and the field strength in clouds threaded by poloidal and toroidal magnetic fields. We applied this formalism to models of low- and high-mass star formation extracted from numerical simulations of gravitational collapse that include rotation and turbulence. For each model we determine the size of the magnetic decoupling zone, where collapse or rotation motion becomes unaffected by the local magnetic field. In general, we find that decoupling only occurs when the attenuation of cosmic rays is taken into account with respect to a calculation in which the cosmic-ray ionisation rate is kept constant. The extent of the decoupling zone also depends on the dust grain size distribution and is larger if large grains (of radius $sim 10^{-5}$ cm) are formed by compression and coagulation during cloud collapse. We conclude that a realistic treatment of cosmic-ray propagation and attenuation during cloud collapse may lead to a value of the resistivity of the gas in the innermost few hundred AU around a forming protostar that is higher than generally assumed.
Truncated abstract: The formation of a protostellar disc is a natural outcome during the star formation process. As gas in a molecular cloud core collapses under self-gravity, the angular momentum of the gas will slow its collapse on small scales and
Cosmic rays (CRs) are tracers of solar events when they are associated with solar flares, but also galactic events when they come from outside our solar system. SEPs are correlated with the 11-year solar cycle while GCRs are anti-correlated due to th
We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is descr
Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $overline{mathcal{E}} $) generated by the helical turbulence driven by
We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes -- magnetohydrodynamics, radiative transfer, and protostellar outflows -- and span a wide range of viri