ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of solar magnetic field amplitude and geometry on cosmic rays diffusion coefficients in the inner heliosphere

74   0   0.0 ( 0 )
 نشر من قبل Barbara Perri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic rays (CRs) are tracers of solar events when they are associated with solar flares, but also galactic events when they come from outside our solar system. SEPs are correlated with the 11-year solar cycle while GCRs are anti-correlated due to their interaction with the heliospheric magnetic field and the solar wind. Our aim is to quantify separately the impact of the amplitude and the geometry of the magnetic field on the propagation of CRs of various energies in the inner heliosphere. We focus especially on the diffusion caused by the magnetic field along and across the field lines. To do so, we use the results of 3D MHD wind simulations running from the lower corona up to 1 AU. The wind is modeled using a polytropic approximation, and fits and power laws are used to account for the turbulence. Using these results, we compute the parallel and perpendicular diffusion coefficients of the Parker CR transport equation, yielding 3D maps of the diffusion of CRs in the inner heliosphere. By varying the amplitude of the magnetic field, we change the amplitude of the diffusion by the same factor, and the radial gradients by changing the spread of the current sheet. By varying the geometry of the magnetic field, we change the latitudinal gradients of diffusion by changing the position of the current sheets. By varying the energy, we show that the distribution of values for SEPs is more peaked than GCRs. For realistic solar configurations, we show that diffusion is highly non-axisymmetric due to the configuration of the current sheets, and that the distribution varies a lot with the distance to the Sun with a drift of the peak value. This study shows that numerical simulations and theory can help quantify better the influence of the various magnetic field parameters on the propagation of CRs. This study is a first step towards generating synthetic CR rates from numerical simulations.



قيم البحث

اقرأ أيضاً

The first two orbits of the Parker Solar Probe (PSP) spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 Rs). Here, we present an analysis of this data to study solar wind turbule nce at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include: increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of the velocity and both Elsasser fields, a lower magnetic compressibility consistent with a smaller slow-mode kinetic energy fraction, and a much smaller outer scale that has had time for substantial nonlinear processing. There is also an overall increase in the dominance of outward-propagating Alfvenic fluctuations compared to inward-propagating ones, and the radial variation of the inward component is consistent with its generation by reflection from the large-scale gradient in Alfven speed. The energy flux in this turbulence at 0.17 au was found to be ~10% of that in the bulk solar wind kinetic energy, becoming ~40% when extrapolated to the Alfven point, and both the fraction and rate of increase of this flux towards the Sun is consistent with turbulence-driven models in which the solar wind is powered by this flux.
69 - Z.-N. Shen , G. Qin 2017
The 11-year and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere are studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parkers transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of $A>0$ decided by the percentage of the north solar polar magnetic field being outward and the south solar polar magnetic field being inward. The computed results are compared with several GCR observations, e.g., IMP 8, SOHO/EPHIN, Ulysses, Voyager 1 & 2, at various energies and show good agreement. It is shown that our model has successfully reproduced the 11-year and 22-year modulation cycles.
We analyze magnetic field data from the first six encounters of PSP, three Helios fast streams and two Ulysses south polar passes covering heliocentric distances $0.1lesssim Rlesssim 3$ au. We use this data set to statistically determine the evolutio n of switchbacks of different periods and amplitudes with distance from the Sun. We compare the radial evolution of magnetic field variances with that of the mean square amplitudes of switchbacks, and quantify the radial evolution of the cumulative counts of switchbacks per km. We find that the amplitudes of switchbacks decrease faster than the overall turbulent fluctuations, in a way consistent with the radial decrease of the mean magnetic field. This could be the result of a saturation of amplitudes and may be a signature of decay processes of large amplitude Alfvenic fluctuations in the solar wind. We find that the evolution of switchback occurrence in the solar wind is scale-dependent: the fraction of longer duration switchbacks increases with radial distance whereas it decreases for shorter switchbacks. This implies that switchback dynamics is a complex process involving both decay and in-situ generation in the inner heliosphere. We confirm that switchbacks can be generated by the expansion although other type of switchbacks generated closer to the sun cannot be ruled out.
We analyze the evolution of the interplanetary magnetic field spatial structure by examining the inner heliospheric autocorrelation function, using Helios 1 and Helios 2 in situ observations. We focus on the evolution of the integral length scale (la mbda) anisotropy associated with the turbulent magnetic fluctuations, with respect to the aging of fluid parcels traveling away from the Sun, and according to whether the measured lambda is principally parallel (lambda_parallel) or perpendicular (lambda_perp) to the direction of a suitably defined local ensemble average magnetic field B0. We analyze a set of 1065 24-hour long intervals (covering full missions). For each interval, we compute the magnetic autocorrelation function, using classical single-spacecraft techniques, and estimate lambda with help of two different proxies for both Helios datasets. We find that close to the Sun, lambda_parallel < lambda_perp. This supports a slab-like spectral model, where the population of fluctuations having wavevector k parallel to B0 is much larger than the one with k-vector perpendicular. A population favoring perpendicular k-vectors would be considered quasi-two dimensional (2D). Moving towards 1 AU, we find a progressive isotropization of lambda and a trend to reach an inverted abundance, consistent with the well-known result at 1 AU that lambda_parallel > lambda_perp, usually interpreted as a dominant quasi-2D picture over the slab picture. Thus, our results are consistent with driving modes having wavevectors parallel to B0 near Sun, and a progressive dynamical spectral transfer of energy to modes with perpendicular wavevectors as the solar wind parcels age while moving from the Sun to 1 AU.
In the standard model of solar flares, a large-scale reconnection current sheet is postulated as the central engine for powering the flare energy release and accelerating particles. However, where and how the energy release and particle acceleration occur remain unclear due to the lack of measurements for the magnetic properties of the current sheet. Here we report the measurement of spatially-resolved magnetic field and flare-accelerated relativistic electrons along a current-sheet feature in a solar flare. The measured magnetic field profile shows a local maximum where the reconnecting field lines of opposite polarities closely approach each other, known as the reconnection X point. The measurements also reveal a local minimum near the bottom of the current sheet above the flare loop-top, referred to as a magnetic bottle. This spatial structure agrees with theoretical predictions and numerical modeling results. A strong reconnection electric field of ~4000 V/m is inferred near the X point. This location, however, shows a local depletion of microwave-emitting relativistic electrons. These electrons concentrate instead at or near the magnetic bottle structure, where more than 99% of them reside at each instant. Our observations suggest that the loop-top magnetic bottle is likely the primary site for accelerating and/or confining the relativistic electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا