ترغب بنشر مسار تعليمي؟ اضغط هنا

High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations

124   0   0.0 ( 0 )
 نشر من قبل Federico Fuentes
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $texttt{PolyDPG}$ software supporting polygonal and conventional elements.



قيم البحث

اقرأ أيضاً

In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered i n these derivations. Unlike with classical formulations used by Bubnov-Galerkin methods, with so-called ultraweak variational formulations, these two strategies in fact deliver different formulations in the PML region. One of the strategies, which is argued to be more physically natural, is employed for numerically solving two- and three-dimensional time-harmonic acoustic, elastic, and electromagnetic wave propagation problems, defined in unbounded domains. Through these numerical experiments, efficacy of the new DPG methods with PMLs is verified.
Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in [N. Heuer, F. Pinochet, arXiv 1309.1697 (to appear in SIAM J. Numer. Anal.)], we study the case of a hypersingular integral equation o n open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov-Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the L^2-norm. Some numerical experiments confirm expected convergence rates.
126 - Tao Xiong , Wenjun Sun , Yi Shi 2020
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stabili ty enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Delta t=mathcal{O}(h)$ where $Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $Delta t=mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.
123 - Jan Glaubitz , Anne Gelb 2019
This paper investigates the use of $ell^1$ regularization for solving hyperbolic conservation laws based on high order discontinuous Galerkin (DG) approximations. We first use the polynomial annihilation method to construct a high order edge sensor w hich enables us to flag troubled elements. The DG approximation is enhanced in these troubled regions by activating $ell^1$ regularization to promote sparsity in the corresponding jump function of the numerical solution. The resulting $ell^1$ optimization problem is efficiently implemented using the alternating direction method of multipliers. By enacting $ell^1$ regularization only in troubled cells, our method remains accurate and efficient, as no additional regularization or expensive iterative procedures are needed in smooth regions. We present results for the inviscid Burgers equation as well as a nonlinear system of conservation laws using a nodal collocation-type DG method as a solver.
In this work, we propose and investigate stable high-order collocation-type discretisations of the discontinuous Galerkin method on equidistant and scattered collocation points. We do so by incorporating the concept of discrete least squares into the discontinuous Galerkin framework. Discrete least squares approximations allow us to construct stable and high-order accurate approximations on arbitrary collocation points, while discrete least squares quadrature rules allow us their stable and exact numerical integration. Both methods are computed efficiently by using bases of discrete orthogonal polynomials. Thus, the proposed discretisation generalises known classes of discretisations of the discontinuous Galerkin method, such as the discontinuous Galerkin collocation spectral element method. We are able to prove conservation and linear $L^2$-stability of the proposed discretisations. Finally, numerical tests investigate their accuracy and demonstrate their extension to nonlinear conservation laws, systems, longtime simulations, and a variable coefficient problem in two space dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا