ترغب بنشر مسار تعليمي؟ اضغط هنا

The intra-hour variable quasar J1819$+$3845: 13-year evolution, jet polarization structure and interstellar scattering screen properties

160   0   0.0 ( 0 )
 نشر من قبل J.-P. Macquart
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the long-term evolution of the intra-hour variable quasar, J1819+3845, whose variations have been attributed to interstellar scintillation by extremely local turbulent plasma, located only 1-3pc from Earth. The variations in this source ceased some time between June 2006 and February 2007. The evolution of the source spectrum and the long-term lightcurve, and the persistent compactness of the source VLBI structure indicates that the cessation of rapid variability was associated with the passage of the scattering material out of the line of sight to the quasar. We present an analysis of the linear polarization variations and their relation to total intensity variations. The proper motion of polarized features in the quasar jet is found to be subluminal. Systematic time delays between Stokes I, Q and U, in combination with the structure of the source obtained from 8.4GHz VLBI data, confirm the estimate of the screen distance: 1-2pc, making the screen one of the nearest objects to the Solar System. We determine the physical properties of this scattering material. The electron density in the scattering region is extremely high with respect to the warm ionized ISM, with an estimated density of $n_e sim 97 , l_0^{1/3} {Delta L}_{100}^{-1/2}$cm$^{-3}$, where $l_0$ is the outer scale of the turbulence in AU and $Delta L = 100 Delta L_{100}$ AU is the depth of the scattering region. If this plasma is in pressure balance with the local magnetic field, one expects a ~2 rad/m^2 rotation measure change associated with the passage of this material past the quasar. We examine the rotation measures of sources and the diffuse polarized emission in the surrounding region. We place a limit of 10 rad/m^2 on the RM change. The variability of sources near J1819+3845 is used to deduce that the screen must therefore be either very small (~100 AU) or patchy.



قيم البحث

اقرأ أيضاً

The extreme, intra-hour and > 10% rms flux density scintillation observed in AGNs such as PKS 0405-385, J1819+3845 and PKS 1257-326 at cm wavelengths has been attributed to scattering in highly turbulent, nearby regions in the interstellar medium. Su ch behavior has been found to be rare. We searched for rapid scintillators among 128 flat spectrum AGNs and analyzed their properties to determine the origin of such rapid and large amplitude radio scintillation. The sources were observed at the VLA at 4.9 and 8.4 GHz simultaneously at two hour intervals over 11 days. We detected six rapid scintillators with characteristic time-scales of < 2 hours, none of which have rms variations > 10%. We found strong lines of evidence linking rapid scintillation to the presence of nearby scattering regions, estimated to be < 12 pc away for ~ 200 muas sources and < 250 pc away for ~ 10 muas sources. We attribute the scarcity of rapid and large amplitude scintillators to the requirement of additional constraints, including large source compact fractions. J1819+3845 was found to display ~ 2% rms variations at ~ 6 hour time-scales superposed on longer > 11 day variations, suggesting that the highly turbulent cloud responsible for its extreme scintillation has moved away, with its scintillation now caused by a more distant screen ~ 50 to 150 pc away.
128 - Juan P. Madrid 2020
Observations with the Australia Telescope Compact Array revealed intra-hour variations in the radio source PKS B1322-110 (Bignall et al. 2019). As part of an optical follow-up, we obtained Gemini Halpha and Halpha continuum (HalphaC) images of the PK S B1322-110 field. A robust 19-sigma detection of PKS B1322-110 in the Halpha-HalphaC image prompted us to obtain the first optical spectrum of PKS B1322-110. With the Gemini spectrum we determine that PKS B1322-110 is a flat-spectrum radio quasar at a redshift of z=3.007 +/- 0.002. The apparent flux detected in the Halpha filter is likely to originate from HeII emission redshifted precisely on the Galactic Halpha narrow-band filter. We set upper limits on the emission measure of the Galactic plasma, for various possible cloud geometries.
122 - T. An , B.-Q. Lao , W. Zhao 2016
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of $sim$1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of $2.8times 10^{9}$~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of $-135^circ$ to $-115^circ$. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as $0.013 pm 0.011$ mas yr$^{-1}$ ($beta_{rm app} = 0.6 pm 0.5$), corresponding to a jet speed of about $0.5,c$ at an inclination angle of $48^circ$ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of $gamma$-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which $gamma$-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of $gamma$-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the $gamma$-ray production mechanism in this source.
The propagation of radio waves from distant compact radio sources through turbulent interstellar plasma in our Galaxy causes these sources to twinkle, a phenomenon called interstellar scintillation. Such scintillations are a unique probe of the micro -arcsecond structure of radio sources as well as of the sub-AU-scale structure of the Galactic interstellar medium. Weak scintillations (i.e. an intensity modulation of a few percent) on timescales of a few days or longer are commonly seen at centimetre wavelengths and are thought to result from the line-of-sight integrated turbulence in the interstellar plasma of the Milky Way. So far, only three sources were known that show more extreme variations, with modulations at the level of some dozen percent on timescales shorter than an hour. This requires propagation through nearby (d <~10 pc) anomalously dense (n_e ~10^2 cm^-3) plasma clouds. Here we report the discovery with Apertif of a source (J1402+5347) showing extreme (~50%) and rapid variations on a timescale of just 6.5 minutes in the decimetre band (1.4 GHz). The spatial scintillation pattern is highly anisotropic, with a semi-minor axis of about 20,000 km. The canonical theory of refractive scintillation constrains the scattering plasma to be within the Oort cloud. The sightline to J1402+5347, however, passes unusually close to the B3 star Alkaid (eta UMa) at a distance of 32 pc. If the scintillations are associated with Alkaid, then the angular size of J1402+5347 along the minor axis of the scintels must be smaller than ~10 micro arcsec yielding an apparent brightness temperature for an isotropic source of >~ 10^ 14K. }
PKS 1257-326 is a quasar showing extremely unusual, rapid interstellar scintillation (ISS), which has persisted for at least a decade. Simultaneous observations with the VLA and ATCA, combined with ATCA monitoring over several years, have revealed so me properties of the turbulent ionized medium responsible for the ISS of PKS 1257-326. The scattering occurs in an unusually nearby (~10 pc), localized screen. The scintillation pattern is highly anisotropic with axial ratio more than 10:1 elongated in a northwest direction on the sky. Recent findings and implications for small-scale ionized structures in the ISM are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا