ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical study of PKS B1322-110, the intra-hour variable radio source

129   0   0.0 ( 0 )
 نشر من قبل Juan P. Madrid
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Juan P. Madrid




اسأل ChatGPT حول البحث

Observations with the Australia Telescope Compact Array revealed intra-hour variations in the radio source PKS B1322-110 (Bignall et al. 2019). As part of an optical follow-up, we obtained Gemini Halpha and Halpha continuum (HalphaC) images of the PKS B1322-110 field. A robust 19-sigma detection of PKS B1322-110 in the Halpha-HalphaC image prompted us to obtain the first optical spectrum of PKS B1322-110. With the Gemini spectrum we determine that PKS B1322-110 is a flat-spectrum radio quasar at a redshift of z=3.007 +/- 0.002. The apparent flux detected in the Halpha filter is likely to originate from HeII emission redshifted precisely on the Galactic Halpha narrow-band filter. We set upper limits on the emission measure of the Galactic plasma, for various possible cloud geometries.



قيم البحث

اقرأ أيضاً

73 - Hayley Bignall 2019
PKS B1322-110 is a radio quasar that is located only 8.5 in angular separation from the bright B star Spica. It exhibits intra-day variability in its flux density at GHz frequencies attributed to scintillations from plasma inhomogeneities. We have tr acked the rate of scintillation of this source for over a year with the Australia Telescope Compact Array, recording a strong annual cycle that includes a near-standstill in August and another in December. The cycle is consistent with scattering by highly anisotropic plasma microstructure, and we fit our data to that model in order to determine the kinematic parameters of the plasma. Because of the low ecliptic latitude of PKS B1322-110, the orientation of the plasma microstructure is poorly constrained. Nonetheless at each possible orientation our data single out a narrow range of the corresponding velocity component, leading to a one-dimensional constraint in a two-dimensional parameter space. The constrained region is consistent with a published model in which the scattering material is associated with Spica and consists of filaments that are radially oriented around the star. This result has a 1% probability of arising by chance.
The propagation of radio waves from distant compact radio sources through turbulent interstellar plasma in our Galaxy causes these sources to twinkle, a phenomenon called interstellar scintillation. Such scintillations are a unique probe of the micro -arcsecond structure of radio sources as well as of the sub-AU-scale structure of the Galactic interstellar medium. Weak scintillations (i.e. an intensity modulation of a few percent) on timescales of a few days or longer are commonly seen at centimetre wavelengths and are thought to result from the line-of-sight integrated turbulence in the interstellar plasma of the Milky Way. So far, only three sources were known that show more extreme variations, with modulations at the level of some dozen percent on timescales shorter than an hour. This requires propagation through nearby (d <~10 pc) anomalously dense (n_e ~10^2 cm^-3) plasma clouds. Here we report the discovery with Apertif of a source (J1402+5347) showing extreme (~50%) and rapid variations on a timescale of just 6.5 minutes in the decimetre band (1.4 GHz). The spatial scintillation pattern is highly anisotropic, with a semi-minor axis of about 20,000 km. The canonical theory of refractive scintillation constrains the scattering plasma to be within the Oort cloud. The sightline to J1402+5347, however, passes unusually close to the B3 star Alkaid (eta UMa) at a distance of 32 pc. If the scintillations are associated with Alkaid, then the angular size of J1402+5347 along the minor axis of the scintels must be smaller than ~10 micro arcsec yielding an apparent brightness temperature for an isotropic source of >~ 10^ 14K. }
We examine the long-term evolution of the intra-hour variable quasar, J1819+3845, whose variations have been attributed to interstellar scintillation by extremely local turbulent plasma, located only 1-3pc from Earth. The variations in this source ce ased some time between June 2006 and February 2007. The evolution of the source spectrum and the long-term lightcurve, and the persistent compactness of the source VLBI structure indicates that the cessation of rapid variability was associated with the passage of the scattering material out of the line of sight to the quasar. We present an analysis of the linear polarization variations and their relation to total intensity variations. The proper motion of polarized features in the quasar jet is found to be subluminal. Systematic time delays between Stokes I, Q and U, in combination with the structure of the source obtained from 8.4GHz VLBI data, confirm the estimate of the screen distance: 1-2pc, making the screen one of the nearest objects to the Solar System. We determine the physical properties of this scattering material. The electron density in the scattering region is extremely high with respect to the warm ionized ISM, with an estimated density of $n_e sim 97 , l_0^{1/3} {Delta L}_{100}^{-1/2}$cm$^{-3}$, where $l_0$ is the outer scale of the turbulence in AU and $Delta L = 100 Delta L_{100}$ AU is the depth of the scattering region. If this plasma is in pressure balance with the local magnetic field, one expects a ~2 rad/m^2 rotation measure change associated with the passage of this material past the quasar. We examine the rotation measures of sources and the diffuse polarized emission in the surrounding region. We place a limit of 10 rad/m^2 on the RM change. The variability of sources near J1819+3845 is used to deduce that the screen must therefore be either very small (~100 AU) or patchy.
91 - X. Liu , P.P. Yang , J. Liu 2017
We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) a nd several optical telescopes in Asia, Europe, and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radio- and optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations.
We present broadband observations and spectral modeling of PKS B0008-421, and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theor etical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with various absorption models. We find that without the inclusion of a high-frequency exponential break the absorption models can not accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous free-free absorption and double-component synchrotron self-absorption models, with the inhomogeneous free-free absorption model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous free-free absorption model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep spectrum source population could be composed of these GPS sources in a relic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا