ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-Body Localization Transition in Random Quantum Spin Chains with Long-Range Interactions

246   0   0.0 ( 0 )
 نشر من قبل Stefan Kettemann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power $alpha$, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing $alpha$. At $alpha_c$ the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many body localization transition in disordered antiferromagnetic spin chains with long range interactions.



قيم البحث

اقرأ أيضاً

Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the exis tence of a mobility edge in the large system-size limit.
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions or long-range hopping. Based on perturbative arguments there is a common belief that MBL can exist only in systems with short-range interactions and short-range hopping. We analyze effects of power-law interactions and power-law hopping, separately, on a system which has all the single particle states localized in the absence of interactions. Since delocalization is driven by proliferation of resonances in the Fock space, we mapped this model to an effective Anderson model on a complex graph in the Fock space, and calculated the probability distribution of the number of resonances up to third order. Though the most-probable value of the number of resonances diverge for the system with long-range hopping ($t(r) sim t_0/r^alpha$ with $alpha < 2$), there is no enhancement of the number of resonances as the range of power-law interactions increases. This indicates that the long-range hopping delocalizes the many-body localized system but in contrast to this, there is no signature of delocalization in the presence of long-range interactions. We further provide support in favor of this analysis based on dynamics of the system after a quench starting from a charge density wave ordered state, level spacing statistics, return probability, participation ratio and Shannon entropy in the Fock space. We demonstrate that MBL persists in the presence of long-range interactions though long-range hopping with $1<alpha <2$ delocalizes the system partially, with all the states extended for $alpha <1$. Even in a system which has single-particle mobility edges in the non-interacting limit, turning on long-range interactions does not cause delocalization.
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ a nd the growth of entanglement entropy $S_{textrm{ent}}(t)$ during unitary time evolution. Near the phase transition we find that $m_s(t)$ decays exponentially to its asymptotic value $m_s(infty) eq 0$ in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, $m_s(infty)$ shows an exponential sensitivity on disorder with a critical exponent $ usim 0.9$. The entanglement entropy in the ergodic phase grows subballistically, $S_{textrm{ent}}(t)sim t^alpha$, $alphaleq 1$, with $alpha$ varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions decaying as power-law $V_{ij}/(r_i-r_j)^alpha$ with distance and having random coefficients $V_{ij}$. We demonstrate that MBL survives even for $alpha <1$ and is preceded by a broad non-ergodic sub-diffusive phase. Starting from parameters at which the short-range interacting system shows infinite temperature MBL phase, turning on random power-law interactions results in many-body mobility edges in the spectrum with a larger fraction of ergodic delocalized states for smaller values of $alpha$. Hence, the critical disorder $h_c^r$, at which ergodic to non-ergodic transition takes place increases with the range of interactions. Time evolution of the density imbalance $I(t)$, which has power-law decay $I(t) sim t^{-gamma}$ in the intermediate to large time regime, shows that the critical disorder $h_{c}^I$, above which the system becomes diffusion-less (with $gamma sim 0$) and transits into the MBL phase is much larger than $h_c^r$. In between $h_{c}^r$ and $h_{c}^I$ there is a broad non-ergodic sub-diffusive phase, which is characterized by the Poissonian statistics for the level spacing ratio, multifractal eigenfunctions and a non zero dynamical exponent $gamma ll 1/2$. The system continues to be sub-diffusive even on the ergodic side ($h < h_c^r$) of the MBL transition, where the eigenstates near the mobility edges are multifractal. For $h < h_{0}<h_c^r$, the system is super-diffusive with $gamma >1/2$. The rich phase diagram obtained here is unique to random nature of long-range interactions. We explain this in terms of the enhanced correlations among local energies of the effective Anderson model induced by random power-law interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا