ﻻ يوجد ملخص باللغة العربية
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions decaying as power-law $V_{ij}/(r_i-r_j)^alpha$ with distance and having random coefficients $V_{ij}$. We demonstrate that MBL survives even for $alpha <1$ and is preceded by a broad non-ergodic sub-diffusive phase. Starting from parameters at which the short-range interacting system shows infinite temperature MBL phase, turning on random power-law interactions results in many-body mobility edges in the spectrum with a larger fraction of ergodic delocalized states for smaller values of $alpha$. Hence, the critical disorder $h_c^r$, at which ergodic to non-ergodic transition takes place increases with the range of interactions. Time evolution of the density imbalance $I(t)$, which has power-law decay $I(t) sim t^{-gamma}$ in the intermediate to large time regime, shows that the critical disorder $h_{c}^I$, above which the system becomes diffusion-less (with $gamma sim 0$) and transits into the MBL phase is much larger than $h_c^r$. In between $h_{c}^r$ and $h_{c}^I$ there is a broad non-ergodic sub-diffusive phase, which is characterized by the Poissonian statistics for the level spacing ratio, multifractal eigenfunctions and a non zero dynamical exponent $gamma ll 1/2$. The system continues to be sub-diffusive even on the ergodic side ($h < h_c^r$) of the MBL transition, where the eigenstates near the mobility edges are multifractal. For $h < h_{0}<h_c^r$, the system is super-diffusive with $gamma >1/2$. The rich phase diagram obtained here is unique to random nature of long-range interactions. We explain this in terms of the enhanced correlations among local energies of the effective Anderson model induced by random power-law interactions.
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions or long-range hopping. Based on perturbative arguments there is a common belief
We study many-body localization (MBL) for interacting one-dimensional lattice fermions in random (Anderson) and quasiperiodic (Aubry-Andre) models, focusing on the role of interaction range. We obtain the MBL quantum phase diagrams by calculating the
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor
Ergodicity in quantum many-body systems is - despite its fundamental importance - still an open problem. Many-body localization provides a general framework for quantum ergodicity, and may therefore offer important insights. However, the characteriza
At long times residual couplings to the environment become relevant even in the most isolated experiments, creating a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a c