ﻻ يوجد ملخص باللغة العربية
At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open quantum system is stabilized by a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a quantum controller with decoherence (reservoir engineering). We begin to explain these models and methods for the photon box experiments realized in the group of Serge Haroche (Nobel Prize 2012). We present then these models and methods for general open quantum systems.
In this note we study the generation of attractive oscillations of a class of mechanical systems with underactuation one. The proposed design consists of two terms, i.e., a partial linearizing state feedback, and an immersion and invariance orbital s
The goal of this paper is to provide conditions under which a quantum stochastic differential equation (QSDE) preserves the commutation and anticommutation relations of the SU(n) algebra, and thus describes the evolution of an open n-level quantum sy
Output feedback stabilization of control systems is a crucial issue in engineering. Most of these systems are not uniformly observable, which proves to be a difficulty to move from state feedback stabilization to dynamic output feedback stabilization
Brocketts necessary condition yields a test to determine whether a system can be made to stabilize about some operating point via continuous, purely state-dependent feedback. For many real-world systems, however, one wants to stabilize sets which are
We are interested in the control of forming processes for nonlinear material models. To develop an online control we derive a novel feedback law and prove a stabilization result. The derivation of the feedback control law is based on a Laypunov analy