ﻻ يوجد ملخص باللغة العربية
We are interested in the control of forming processes for nonlinear material models. To develop an online control we derive a novel feedback law and prove a stabilization result. The derivation of the feedback control law is based on a Laypunov analysis of the time-dependent viscoplastic material models. The derivation uses the structure of the underlying partial differential equation for the design of the feedback control. Analytically, exponential decay of the time evolution of perturbations to desired stress--strain states is shown. We test the new control law numerically by coupling it to a finite element simulation of a deformation process.
At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open qu
Brocketts necessary condition yields a test to determine whether a system can be made to stabilize about some operating point via continuous, purely state-dependent feedback. For many real-world systems, however, one wants to stabilize sets which are
Output feedback stabilization of control systems is a crucial issue in engineering. Most of these systems are not uniformly observable, which proves to be a difficulty to move from state feedback stabilization to dynamic output feedback stabilization
The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for H2 and Hinf control problems. Depending on t
In this paper, we study the boundary feedback stabilization of a quasilinear hyperbolic system with partially dissipative structure. Thanks to this structure, we construct a suitable Lyapunov function which leads to the exponential stability to the e