ﻻ يوجد ملخص باللغة العربية
We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that intervenes between two superconductivity (SC-1/SC-2) phases. The 31P-NMR Knight shift points to the appearance of the sharp density of states at the Fermi level that is derived from d_{3Z^2?r^2} orbit, which is less relevant with the onset of the SC-2. On the other hand, we remark that the AFM spin fluctuations arising from the interband nesting on the d_{XZ}/d_{YZ} orbits must be a key ingredient for the occurrence of SC around AFM-2.
We report on 31P-NMR studies of LaFe(As_{1-x}P_x)(O_{1-y}F_{y}) over wide compositions for 0<x<1 and 0<y<0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Syst
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a result, Tc exhibits r
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxide
We report $^{31}$P- and $^{75}$As-NMR studies on (Ca$_4$Al$_2$O$_{6}$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0$le x le$0.4
We performed $^{31}$P-NMR measurements on LaFe(As$_{1-x}$P$_{x}$)O to investigate the relationship between antiferromagnetism and superconductivity. The antiferromagnetic (AFM) ordering temperature $T_{rm N}$ and the moment $mu_{rm ord}$ are continuo