ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of Novel Antiferromagnetic Order Intervening between Two Superconducting Phases in LaFe(As_1-x_P_x_)O: 31P-NMR Studies

684   0   0.0 ( 0 )
 نشر من قبل Hidekazu Mukuda
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that intervenes between two superconductivity (SC-1/SC-2) phases. The 31P-NMR Knight shift points to the appearance of the sharp density of states at the Fermi level that is derived from d_{3Z^2?r^2} orbit, which is less relevant with the onset of the SC-2. On the other hand, we remark that the AFM spin fluctuations arising from the interband nesting on the d_{XZ}/d_{YZ} orbits must be a key ingredient for the occurrence of SC around AFM-2.



قيم البحث

اقرأ أيضاً

81 - T. Shiota , H. Mukuda , M. Uekubo 2016
We report on 31P-NMR studies of LaFe(As_{1-x}P_x)(O_{1-y}F_{y}) over wide compositions for 0<x<1 and 0<y<0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Syst ematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of d_{xz/yz}, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of d_{xy} and d_{xz/yz}. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As_{1-x}P_x)(O_{1-y}F_y) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a result, Tc exhibits r espective peaks at 24 K and 27 K against the P-substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La_{1-z}Y_z)FeAsO_{delta} compounds in which Tc reaches 50 K for z=0.95, we remark that a moderate development of AFMSFs causes the Tc to increase up to 50 K under the condition that the local lattice parameters of FeAs tetrahedron approaches those of the regular tetrahedron. We propose that the T_c of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxide s. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO$_2$ plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO$_2$ plane in an underdoped regime of HTSC. The $T$=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This {it Mott physics} plays a vital role for mediating the Cooper pairs to make $T_c$ of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in $T_c$ is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle $alpha$ of the FeAs$_4$ tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make $T_c$ higher significantly.
We report $^{31}$P- and $^{75}$As-NMR studies on (Ca$_4$Al$_2$O$_{6}$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0$le x le$0.4 and the nodal one around $x$=1 are intimately separated by the onset of a commensurate stripe-type antiferromagnetic (AFM) order in 0.5$le x le$ 0.95, as an isovalent substitution of P for As decreases a pnictogen height $h_{Pn}$ measured from the Fe plane. It is demonstrated that the AFM order takes place under a condition of 1.32AA$le h_{Pn} le$1.42AA, which is also the case for other Fe-pnictides with the Fe$^{2+}$ state in (Fe$Pn$)$^{-}$ layers. This novel phase evolution with the variation in $h_{Pn}$ points to the importance of electron correlation for the emergence of SC as well as AFM order.
We performed $^{31}$P-NMR measurements on LaFe(As$_{1-x}$P$_{x}$)O to investigate the relationship between antiferromagnetism and superconductivity. The antiferromagnetic (AFM) ordering temperature $T_{rm N}$ and the moment $mu_{rm ord}$ are continuo usly suppressed with increasing P content $x$ and disappear at $x = 0.3$ where bulk superconductivity appears. At this superconducting $x = 0.3$, quantum critical AFM fluctuations are observed, indicative of the intimate relationship between superconductivity and low-energy AFM fluctuations associated with the quantum-critical point in LaFe(As$_{1-x}$P$_{x}$)O. The relationship is similar to those observed in other isovalent-substitution systems, e.g., BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ and SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, with the 122 structure. Moreover, the AFM order reappears with further P substitution ($x > 0.4$). The variation of the ground state with respect to the P substitution is considered to be linked to the change in the band character of Fe-3$d$ orbitals around the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا