ﻻ يوجد ملخص باللغة العربية
We report $^{31}$P- and $^{75}$As-NMR studies on (Ca$_4$Al$_2$O$_{6}$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0$le x le$0.4 and the nodal one around $x$=1 are intimately separated by the onset of a commensurate stripe-type antiferromagnetic (AFM) order in 0.5$le x le$ 0.95, as an isovalent substitution of P for As decreases a pnictogen height $h_{Pn}$ measured from the Fe plane. It is demonstrated that the AFM order takes place under a condition of 1.32AA$le h_{Pn} le$1.42AA, which is also the case for other Fe-pnictides with the Fe$^{2+}$ state in (Fe$Pn$)$^{-}$ layers. This novel phase evolution with the variation in $h_{Pn}$ points to the importance of electron correlation for the emergence of SC as well as AFM order.
We report on 31P-NMR studies of LaFe(As_{1-x}P_x)(O_{1-y}F_{y}) over wide compositions for 0<x<1 and 0<y<0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Syst
We report 75As-nuclear quadrupole resonance (NQR) studies on (Ca_4Al_2O_{6-y})(Fe_2As_2) with Tc=27K, which unravel unique normal-state properties and point to unconventional nodeless superconductivity (SC). Measurement of nuclear-spin-relaxation rat
The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe Moss
We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that
We report an 75As-NMR study on iron (Fe)-based superconductors with thick perovskitetype blocking layers Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with x=0 and 0.2. We have found that antiferromagnetic (AFM) order takes place when x=0, and superconductivity (SC)