ﻻ يوجد ملخص باللغة العربية
We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneous quantum cascade structure operating in the THz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the mW range and more than 80 modes above threshold. Free-running beatnote investigations on narrow waveguides with linewidths of 980 Hz limited by jitter indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based THz frequency combs.
We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attr
Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from
We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in
The generation and amplification of photons by parametric down-conversion in quadratic nonlinear media is used as a source of entangled photons, squeezed light, and short optical pulses at difficult to access wavelengths. Optical nonlinearities are i
We use dispersive Fourier transformation to measure shot-to-shot spectral instabilities in femtosecond supercontinuum generation. We study both the onset phase of supercontinuum generation with distinct dispersive wave generation, as well as a highly