ﻻ يوجد ملخص باللغة العربية
Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from spectroscopy to quantum information processing. Unfortunately, existing tunable parametric sources are marred by deficiencies that obstruct their widespread adoption. Here we show that ultrahigh-Q crystalline microresonators made of magnesium fluoride can overcome these limitations, enabling compact and power-efficient devices capable of generating clean and widely-tunable sidebands. We consider several different resonators with carefully engineered dispersion profiles, achieving hundreds of nanometers of sideband tunability in each device when driven with a standard low-power laser at 1550 nm. In addition to direct observations of discrete tunability over an entire optical octave from 1083 nm to 2670 nm, we record signatures of mid-infrared sidebands at almost 4000 nm. The simplicity of the devices considered -- compounded by their remarkable tunability -- paves the way for low-cost, widely-tunable sources of electromagnetic radiation.
We report on the first experimental demonstration of widely-tunable parametric sideband generation in a Kerr microresonator. Specifically, by pumping a silica microsphere in the normal dispersion regime, we achieve the generation of phase-matched fou
The generation and amplification of photons by parametric down-conversion in quadratic nonlinear media is used as a source of entangled photons, squeezed light, and short optical pulses at difficult to access wavelengths. Optical nonlinearities are i
We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneou
A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this cl