ﻻ يوجد ملخص باللغة العربية
We study the breathing oscillations in bose-fermi mixtures in the axially-symmetric deformed trap of prolate, spherical and oblate shapes, and clarify the deformation dependence of the frequencies and the characteristics of collective oscillations. The collective oscillations of the mixtures in deformed traps are calculated in the scaling method. In largely-deformed prolate and oblate limits and spherical limit, we obtain the analytical expressions of the collective frequencies. The full calculation shows that the collective oscillations become consistent with the analytically-obtained frequencies when the system is deformed into both prolate and oblate regions. The complicated changes of oscillation characters are shown to occur in the transcendental regions around the spherically-deformed region. We find that these critical changes of oscillation characters are explained by the level crossing behaviors of the intrinsic oscillation modes. The approximate expressions are obtained for the level crossing points that determine the transcendental regions. We also compare the results of the scaling methods with those of the dynamical approach.
We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated
We investigate collective excitations of density fluctuations and a dynamic density structure factor in a mixture of Bose and Fermi gases in a normal phase. With decreasing temperature, we find that the frequency of the collective excitation deviates
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical pi
We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons an
We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum Monte Carlo methods. Our main aim is to investigate the dependence of the superfluid density and the condensate fraction on temperature, for the mixed and sep