ترغب بنشر مسار تعليمي؟ اضغط هنا

Breathing oscillations of a trapped impurity in a Bose gas

202   0   0.0 ( 0 )
 نشر من قبل Tomi Johnson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical picture of such dynamics at zero temperature, using a time-dependent variational approach. In the Gross-Pitaevskii regime we obtain breathing oscillations whose amplitudes are suppressed by self trapping, due to interactions with the Bose gas. Introducing phonons in the Bose gas leads to the damping of breathing oscillations and non-Markovian dynamics of the width of the impurity, the degree of which can be engineered through controllable parameters. Our results reproduce the main features of the impurity dynamics observed by Catani et al. despite experimental thermal effects, and are supported by simulations of the system in the Gross-Pitaevskii regime. Moreover, we predict novel effects at lower temperatures due to self-trapping and the inhomogeneity of the trapped Bose gas.



قيم البحث

اقرأ أيضاً

We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles . To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
We experimentally study the energy-temperature relationship of a harmonically trapped Bose-Einstein condensate by transferring a known quantity of energy to the condensate and measuring the resulting temperature change. We consider two methods of hea t transfer, the first using a free expansion under gravity and the second using an optical standing wave to diffract the atoms in the potential. We investigate the effect of interactions on the thermodynamics and compare our results to various finite temperature theories.
We investigate the problem of $N$ identical bosons that are coupled to an impurity particle with infinite mass. For non-interacting bosons, we show that a dynamical impurity-boson interaction, mediated by a closed-channel dimer, can induce an effecti ve boson-boson repulsion which strongly modifies the bound states consisting of the impurity and $N$ bosons. In particular, we demonstrate the existence of two universal multi-body resonances, where all multi-body bound states involving any $N$ emerge and disappear. The first multi-body resonance corresponds to infinite impurity-boson scattering length, $ato +infty$, while the second corresponds to the critical scattering length $a^*>0$ beyond which the trimer ($N=2$ bound state) ceases to exist. Crucially, we show that the existence of $a^*$ ensures that the ground-state energy in the multi-body bound-state region, $infty>a> a^*$, is bounded from below, with a bound that is independent of $N$. Thus, even though the impurity can support multi-body bound states, they become increasingly fragile beyond the dimer state. This has implications for the nature of the Bose polaron currently being studied in cold-atom experiments.
The dynamical evolution of an inhomogeneous ultracold atomic gas quenched at different controllable rates through the Bose-Einstein condensation phase transition is studied numerically in the premise of a recent experiment in an anisotropic harmonic trap. Our findings based on the stochastic (projected) Gross-Pitaevskii equation are shown to be consistent at early times with the predictions of the homogeneous Kibble-Zurek mechanism. This is demonstrated by collapsing the early dynamical evolution of densities, spectral functions and correlation lengths for different quench rates, based on an appropriate characterization of the distance to criticality felt by the quenched system. The subsequent long-time evolution, beyond the identified dynamical critical region, is also investigated by looking at the behaviour of the density wavefront evolution and the corresponding phase ordering dynamics.
Properties of a single impurity in a one-dimensional Fermi gas are investigated in homogeneous and trapped geometries. In a homogeneous system we use McGuires expression [J. B. McGuire, J. Math. Phys. 6, 432 (1965)] to obtain interaction and kinetic energies, as well as the local pair correlation function. The energy of a trapped system is obtained (i) by generalizing McGuire expression (ii) within local density approximation (iii) using perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that a closed formula based on the exact solution of the homogeneous case provides a precise estimation for the energy of a trapped system for arbitrary coupling constant of the impurity even for a small number of fermions. We analyze energy contributions from kinetic, interaction and potential components, as well as spatial properties such as the system size. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا