ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Asymptotics for Waveguides with Perturbed Periodic Twisting

202   0   0.0 ( 0 )
 نشر من قبل Georgi Raikov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Georgi Raikov




اسأل ChatGPT حول البحث

We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variable along the axis of $Omega$. We study the spectral properties of the Dirichlet Laplacian in $Omega_theta$, unitarily equivalent under the diffeomorphism $Omega_theta to Omega$ to the operator $H_{theta}$, self-adjoint in ${rm L}^2(Omega)$. We assume that $theta = beta - epsilon$ where $beta$ is a $2pi$-periodic function, and $epsilon$ decays at infinity. Then in the spectrum $sigma(H_beta)$ of the unperturbed operator $H_beta$ there is a semi-bounded gap $(-infty, {mathcal E}_0^+)$, and, possibly, a number of bounded open gaps $({mathcal E}_j^-, {mathcal E}_j^+)$. Since $epsilon$ decays at infinity, the essential spectra of $H_beta$ and $H_{beta - epsilon}$ coincide. We investigate the asymptotic behaviour of the discrete spectrum of $H_{beta - epsilon}$ near an arbitrary fixed spectral edge ${mathcal E}_j^pm$. We establish necessary and quite close sufficient conditions which guarantee the finiteness of $sigma_{rm disc}(H_{beta-epsilon})$ in a neighbourhood of ${mathcal E}_j^pm$. In the case where the necessary conditions are violated, we obtain the main asymptotic term of the corresponding eigenvalue counting function. The effective Hamiltonian which governs the the asymptotics of $sigma_{rm disc}(H_{beta-epsilon})$ near ${mathcal E}_j^pm$ could be represented as a finite orthogonal sum of operators of the form $-mufrac{d^2}{dx^2} - eta epsilon$, self-adjoint in ${rm L}^2({mathbb R})$; here, $mu > 0$ is a constant related to the so-called effective mass, while $eta$ is $2pi$-periodic function depending on $beta$ and $omega$.



قيم البحث

اقرأ أيضاً

We consider the Dirichlet Laplacian in a three-dimensional waveguide that is a small deformation of a periodically twisted tube. The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $d elta$. We expand the resolvent of the perturbed operator near the bottom of its essential spectrum and we show the existence of exactly one resonance, in the asymptotic regime of $delta$ small. We are able to perform the asymptotic expansion of the resonance in $delta$, which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the particular case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.
Let $Gamma$ be an arbitrary $mathbb{Z}^n$-periodic metric graph, which does not coincide with a line. We consider the Hamiltonian $mathcal{H}_varepsilon$ on $Gamma$ with the action $-varepsilon^{-1}{mathrm{d}^2/mathrm{d} x^2}$ on its edges; here $var epsilon>0$ is a small parameter. Let $minmathbb{N}$. We show that under a proper choice of vertex conditions the spectrum $sigma(mathcal{H}^varepsilon)$ of $mathcal{H}^varepsilon$ has at least $m$ gaps as $varepsilon$ is small enough. We demonstrate that the asymptotic behavior of these gaps and the asymptotic behavior of the bottom of $sigma(mathcal{H}^varepsilon)$ as $varepsilonto 0$ can be completely controlled through a suitable choice of coupling constants standing in those vertex conditions. We also show how to ensure for fixed (small enough) $varepsilon$ the precise coincidence of the left endpoints of the first $m$ spectral gaps with predefined numbers.
We consider metric perturbations of the Landau Hamiltonian. We investigate the asymptotic behaviour of the discrete spectrum of the perturbed operator near the Landau levels, for perturbations with power-like decay, exponential decay or compact support.
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
We make a spectral analysis of the massive Dirac operator in a tubular neighborhood of an unbounded planar curve,subject to infinite mass boundary conditions. Under general assumptions on the curvature, we locate the essential spectrum and derive an effective Hamiltonian on the base curve which approximates the original operator in the thin-strip limit. We also investigate the existence of bound states in the non-relativistic limit and give a geometric quantitative condition for the bound states to exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا