ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalue and Resonance Asymptotics in perturbed periodically twisted tubes: Twisting versus Bending

76   0   0.0 ( 0 )
 نشر من قبل Pablo Miranda
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Dirichlet Laplacian in a three-dimensional waveguide that is a small deformation of a periodically twisted tube. The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $delta$. We expand the resolvent of the perturbed operator near the bottom of its essential spectrum and we show the existence of exactly one resonance, in the asymptotic regime of $delta$ small. We are able to perform the asymptotic expansion of the resonance in $delta$, which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the particular case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.



قيم البحث

اقرأ أيضاً

201 - Georgi Raikov 2014
We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variabl e along the axis of $Omega$. We study the spectral properties of the Dirichlet Laplacian in $Omega_theta$, unitarily equivalent under the diffeomorphism $Omega_theta to Omega$ to the operator $H_{theta}$, self-adjoint in ${rm L}^2(Omega)$. We assume that $theta = beta - epsilon$ where $beta$ is a $2pi$-periodic function, and $epsilon$ decays at infinity. Then in the spectrum $sigma(H_beta)$ of the unperturbed operator $H_beta$ there is a semi-bounded gap $(-infty, {mathcal E}_0^+)$, and, possibly, a number of bounded open gaps $({mathcal E}_j^-, {mathcal E}_j^+)$. Since $epsilon$ decays at infinity, the essential spectra of $H_beta$ and $H_{beta - epsilon}$ coincide. We investigate the asymptotic behaviour of the discrete spectrum of $H_{beta - epsilon}$ near an arbitrary fixed spectral edge ${mathcal E}_j^pm$. We establish necessary and quite close sufficient conditions which guarantee the finiteness of $sigma_{rm disc}(H_{beta-epsilon})$ in a neighbourhood of ${mathcal E}_j^pm$. In the case where the necessary conditions are violated, we obtain the main asymptotic term of the corresponding eigenvalue counting function. The effective Hamiltonian which governs the the asymptotics of $sigma_{rm disc}(H_{beta-epsilon})$ near ${mathcal E}_j^pm$ could be represented as a finite orthogonal sum of operators of the form $-mufrac{d^2}{dx^2} - eta epsilon$, self-adjoint in ${rm L}^2({mathbb R})$; here, $mu > 0$ is a constant related to the so-called effective mass, while $eta$ is $2pi$-periodic function depending on $beta$ and $omega$.
We consider a twisted quantum wave guide, and are interested in the spectral analysis of the associated Dirichlet Laplacian H. We show that if the derivative of rotation angle decays slowly enough at infinity, then there is an infinite sequence of di screte eigenvalues lying below the infimum of the essential spectrum of H, and obtain the main asymptotic term of this sequence.
We define resonances for finitely perturbed quantum walks as poles of the scattering matrix in the lower half plane. We show a resonance expansion which describes the time evolution in terms of resonances and corresponding Jordan chains. In particula r, the decay rate of the survival probability is given by the imaginary part of resonances and the multiplicity. We prove generic simplicity of the resonances, although there are quantum walks with multiple resonances.
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
470 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that deca ys at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا