ترغب بنشر مسار تعليمي؟ اضغط هنا

WASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit

182   0   0.0 ( 0 )
 نشر من قبل Monika Lendl
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of $M_p= 0.2755 pm 0.0089 , M_{J}$, a radius of $R_p= 1.021_{-0.065}^{+0.076}, R_{J}$ and is in an eccentric ($ e= 0.302 pm 0.023 $), $ 10.02165 pm 0.00055 $~d orbit around a main-sequence F9 star. The host stars brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a periastron planetary equilibrium temperature of $T_{eq}= 1225_{-39}^{+36}$ K and a low planetary mean density ($rho_p= 0.259_{-0.048}^{+0.054} , rho_{J}$) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of $beta = -44 pm 11$ deg, and we further derive an orbital obliquity of $psi = 69.6 ^{+4.7}_{-4.1}$ deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days.



قيم البحث

اقرأ أيضاً

We investigate the atmospheric composition of the long period ($P_{rm orb}=$ 10 days), eccentric exo-Saturn WASP-117b. WASP-117b could be in atmospheric temperature and chemistry similar to WASP-107b. In mass and radius WASP-117b is similar to WASP-3 9b, which allows a comparative study of these planets. We analyze a near-infrared transmission spectrum of WASP-117b taken with Hubble Space Telescope/WFC3 G141, which was reduced with two independent pipelines. High resolution measurements were taken with VLT/ESPRESSO in the optical. We report the robust ($3sigma$) detection of a water spectral feature. Using a 1D atmosphere model with isothermal temperature, uniform cloud deck and equilibrium chemistry, the Bayesian evidence of a retrieval analysis of the transmission spectrum indicates a preference for a high atmospheric metallicity ${rm [Fe/H]}=2.58^{+0.26}_{-0.37}$ and clear skies. The data are also consistent with a lower-metallicity composition ${rm [Fe/H]}<1.75$ and a cloud deck between $10^{-2.2} - 10^{-5.1}$ bar, but with weaker Bayesian preference. We retrieve a low CH$_4$ abundance of $<10^{-4}$ volume fraction within $1 sigma$ and $<2cdot 10^{-1}$ volume fraction within $3 sigma$. We cannot constrain the equilibrium temperature between theoretically imposed limits of 700 and 1000~K. Further observations are needed to confirm quenching of CH$_4$ with $K_{zz}geq 10^8$~cm$^2$/s. We report indications of Na and K in the VLT/ESPRESSO high resolution spectrum with substantial Bayesian evidence in combination with HST data.
135 - S. C. C. Barros 2010
We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2455335.92050 +/- 0.00074 (HJD) and the transit duration is 4.663 hours. WASP-38bs discovery was enabled due to an upgrade t o the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 +/- 80K, logg =4.3 +/- 0.1, vsini=8.6 +/- 0.4 km/s, M*=1.16 +/- 0.04 Msun and R* =1.33 +/- 0.03 Rsun, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. The planet has a mass of 2.69 +/- 0.06 Mjup and a radius of 1.09 +/-0.03 Rjup giving a density, rho_p = 2.1 +/-0.1 rho_jup. The high precision of the eccentricity e=0.0314 +/- 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 +/- 33K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V =9.4 mag), is a good candidate for followup atmospheric studies.
We present the discovery of NGTS-19b, a high mass transiting brown dwarf discovered by the Next Generation Transit Survey (NGTS). We investigate the system using follow up photometry from the South African Astronomical Observatory, as well as sector 11 TESS data, in combination with radial velocity measurements from the CORALIE spectrograph to precisely characterise the system. We find that NGTS-19b is a brown dwarf companion to a K-star, with a mass of $69.5 ^{+5.7}_{-5.4}$ M$_{Jup}$ and radius of $1.034 ^{+0.055}_{-0.053}$ R$_{Jup}$. The system has a reasonably long period of 17.84 days, and a high degree of eccentricity of $0.3767 ^{+0.0061}_{-0.0061}$. The mass and radius of the brown dwarf imply an age of $0.46 ^{+0.26}_{-0.15}$ Gyr, however this is inconsistent with the age determined from the host star SED, suggesting that the brown dwarf may be inflated. This is unusual given that its large mass and relatively low levels of irradiation would make it much harder to inflate. NGTS-19b adds to the small, but growing number of brown dwarfs transiting main sequence stars, and is a valuable addition as we begin to populate the so called brown dwarf desert.
We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocussing we achieve a photometric precision of 0.47 to 0.83 m mag per observation over complete transit events. The data are analysed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M_b = 10.43 +/- 0.30 +/- 0.24 Mjup R_b = 1.165 +/- 0.055 +/- 0.014 Rjup (statistical and systematic errors) respectively. The systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M_b > 3 Mjup) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.
Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar -type stars companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot-Jupiters orbiting solar-type stars. The reason of this distinctive feature in the semimajor-axis distribution has been theorized to be the result of the stellar evolution and/or due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years, a handful of transiting short-period planets (P$lesssim$ 10 days) have been found around giant stars, thanks to the high precision photometric data obtained initially by the Kepler mission, and later by its two-wheels extension K2. These new discoveries, have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive sub-stellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017). The main orbital parameters of EPIC,228754001,$b$, obtained with all the available data for the system, are the following: $P$ = 9.1708 $pm$ 0.0025 $d$, $e$ = 0.290 $pm$ 0.049, Mp = 0.495 $pm$ 0.007 Mjup ,and Rp = 1.089 $pm$ 0.006 Rjup. This is the fifth known planet orbiting any giant star with $a < 0.1$, and the most eccentric one among them, making EPIC,228754001,$b$ a very interesting object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا