ﻻ يوجد ملخص باللغة العربية
We show that the driving force behind the regularizing effect of Laplacian smoothing on surface elements is the popular mean ratio quality measure. We use these insights to provide natural generalizations to polygons and polyhedra. The corresponding functions measuring the quality of meshes are easily seen to be convex and can be used for global optimization-based untangling and smoothing. Using a simple backtracking line-search we compare several smoothing methods with respect to the resulting mesh quality. We also discuss their effectiveness in combination with topology modification.
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential pri
This paper presents a simple yet effective method for feature-preserving surface smoothing. Through analyzing the differential property of surfaces, we show that the conventional discrete Laplacian operator with uniform weights is not applicable to f
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified mode
Stochastic MPECs have found increasing relevance for modeling a broad range of settings in engineering and statistics. Yet, there seem to be no efficient first/zeroth-order schemes equipped with non-asymptotic rate guarantees for resolving even deter
It has been widely recognized that the 0/1 loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combin