ترغب بنشر مسار تعليمي؟ اضغط هنا

Formal Verification of Medinas Sequence of Polynomials for Approximating Arctangent

176   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ruben Gamboa




اسأل ChatGPT حول البحث

The verification of many algorithms for calculating transcendental functions is based on polynomial approximations to these functions, often Taylor series approximations. However, computing and verifying approximations to the arctangent function are very challenging problems, in large part because the Taylor series converges very slowly to arctangent-a 57th-degree polynomial is needed to get three decimal places for arctan(0.95). Medina proposed a series of polynomials that approximate arctangent with far faster convergence-a 7th-degree polynomial is all that is needed to get three decimal places for arctan(0.95). We present in this paper a proof in ACL2(r) of the correctness and convergence rate of this sequence of polynomials. The proof is particularly beautiful, in that it uses many results from real analysis. Some of these necessary results were proven in prior work, but some were proven as part of this effort.



قيم البحث

اقرأ أيضاً

Description Logics (DLs) are a family of languages used for the representation and reasoning on the knowledge of an application domain, in a structured and formal manner. In order to achieve this objective, several provers, such as RACER and FaCT++, have been implemented, but these provers themselves have not been yet certified. In order to ensure the soundness of derivations in these DLs, it is necessary to formally verify the deductions applied by these reasoners. Formal methods offer powerful tools for the specification and verification of proof procedures, among them there are methods for proving properties such as soundness, completeness and termination of a proof procedure. In this paper, we present the definition of a proof procedure for the Description Logic ALC, based on a semantic tableau method. We ensure validity of our prover by proving its soundness, completeness and termination properties using Isabelle proof assistant. The proof proceeds in two phases, first by establishing these properties on an abstract level, and then by instantiating them for an implementation based on lists.
We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.
59 - Wendelin Serwe 2015
This paper presents two formal models of the Data Encryption Standard (DES), a first using the international standard LOTOS, and a second using the more recent process calculus LNT. Both models encode the DES in the style of asynchronous circuits, i. e., the data-flow blocks of the DES algorithm are represented by processes communicating via rendezvous. To ensure correctness of the models, several techniques have been applied, including model checking, equivalence checking, and comparing the results produced by a prototype automatically generated from the formal model with those of existing implementations of the DES. The complete code of the models is provided as appendices and also available on the website of the CADP verification toolbox.
Usage control models provide an integration of access control, digital rights, and trust management. To achieve this integration, usage control models support additional concepts such as attribute mutability and continuity of decision. However, these concepts may introduce an additional level of complexity to the underlying model, rendering its definition a cumbersome and prone to errors process. Applying a formal verification technique allows for a rigorous analysis of the interactions amongst the components, and thus for formal guarantees in respect of the correctness of a model. In this paper, we elaborate on a case study, where we express the high-level functional model of the UseCON usage control model in the TLA+ formal specification language, and verify its correctness for <=12 uses in both of its supporting authorisation models.
The syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. In this paper we present a framework for the verification in Coq of properties of programs manipulating the global state e ffect. These properties are expressed in a proof system which is close to the syntax, as in effect systems, in the sense that the state does not appear explicitly in the type of expressions which manipulate it. Rather, the state appears via decorations added to terms and to equations. In this system, proofs of programs thus present two aspects: properties can be verified {em up to effects} or the effects can be taken into account. The design of our Coq library consequently reflects these two aspects: our framework is centered around the construction of two inductive and dependent types, one for terms up to effects and one for the manipulation of decorations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا