ﻻ يوجد ملخص باللغة العربية
We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.
The verification of many algorithms for calculating transcendental functions is based on polynomial approximations to these functions, often Taylor series approximations. However, computing and verifying approximations to the arctangent function are
Description Logics (DLs) are a family of languages used for the representation and reasoning on the knowledge of an application domain, in a structured and formal manner. In order to achieve this objective, several provers, such as RACER and FaCT++,
The syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. In this paper we present a framework for the verification in Coq of properties of programs manipulating the global state e
This paper presents two formal models of the Data Encryption Standard (DES), a first using the international standard LOTOS, and a second using the more recent process calculus LNT. Both models encode the DES in the style of asynchronous circuits, i.
Usage control models provide an integration of access control, digital rights, and trust management. To achieve this integration, usage control models support additional concepts such as attribute mutability and continuity of decision. However, these