ﻻ يوجد ملخص باللغة العربية
We demonstrate the occurrence of permanent spikes using the Lemaitre-Tolman-Bondi models, chosen because the solutions are exact and can be analyzed by qualitative dynamical systems methods. Three examples are given and illustrated numerically. The third example demonstrates that spikes can form directly in the matter density, as opposed to indirectly in previous studies of spikes in the Kasner regime. Spikes provide an alternative general relativistic mechanism for generating exceptionally large structures observed in the Universe.
The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors f
According to Belinskii, Khalatnikov and Lifshitz (BKL), a generic spacelike singularity is characterized by asymptotic locality: Asymptotically, toward the singularity, each spatial point evolves independently from its neighbors, in an oscillatory ma
The exact solution in the LTB model with $f^2 = 1$, $Lambda e 0$ is studied. The initial conditions for the metrical function and its derivatives generate the solution with complicated structure including the solutions like stripping of the shell, c
We perform numerical simulations of the approach to spacetime singularities. The simulations are done with sufficient resolution to resolve the small scale features (known as spikes) that form in this process. We find an analytical formula for the sh
By applying a standard solution-generating transformation to an arbitrary vacuum Bianchi type II solution, one generates a new solution with spikes commonly observed in numerical simulations. It is conjectured that the spike solution is part of the generalized Mixmaster attractor.