ﻻ يوجد ملخص باللغة العربية
According to Belinskii, Khalatnikov and Lifshitz (BKL), a generic spacelike singularity is characterized by asymptotic locality: Asymptotically, toward the singularity, each spatial point evolves independently from its neighbors, in an oscillatory manner that is represented by a sequence of Bianchi type I and II vacuum models. Recent investigations support a modified conjecture: The formation of spatial structures (`spikes) breaks asymptotic locality. The complete description of a generic spacelike singularity involves spike oscillations, which are described by sequences of Bianchi type I and certain inhomogeneous vacuum models. In this paper we describe how BKL and spike oscillations arise from concatenations of exact solutions in a Hubble-normalized state space setting, suggesting the existence of hidden symmetries and showing that the results of BKL are part of a greater picture.
The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors f
We generalize the orthogonally transitive (OT) $G_2$ spike solution to the non-OT $G_2$ case. This is achieved by applying Gerochs transformation on a Kasner seed. The new solution contains two more parameters than the OT $G_2$ spike solution. Unlike
If a lot of dark matter particles accumulate near the black hole, then the chances of detecting dark matter signals near a black hole are greatly increased. These effects may be observed by the Event Horizon Telescope (EHT), Tianqin project, Taiji pr
We perform numerical simulations of the approach to spacetime singularities. The simulations are done with sufficient resolution to resolve the small scale features (known as spikes) that form in this process. We find an analytical formula for the sh
We demonstrate the occurrence of permanent spikes using the Lemaitre-Tolman-Bondi models, chosen because the solutions are exact and can be analyzed by qualitative dynamical systems methods. Three examples are given and illustrated numerically. The t