ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a Massive, Extended Circumgalactic Medium Around the Andromeda Galaxy

246   0   0.0 ( 0 )
 نشر من قبل Nicolas Lehner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the presence of an extended and massive circumgalactic medium (CGM) around Messier 31 using archival HST COS ultraviolet spectroscopy of 18 QSOs projected within two virial radii of M31 (Rvir=300 kpc). We detect absorption from SiIII at -300<vLSR}<-150 km/s toward all 3 sightlines at R<0.2Rvir, 3 of 4 sightlines at 0.8<R/Rvir<1.1, and possibly 1 of 11 at 1.1<R/Rvir<1.8. We present several arguments that the gas at these velocities observed in these directions originates from the CGM of M31 rather than the Local Group or Milky Way CGM or Magellanic Stream. We show that the dwarf galaxies located in the CGM of M31 have very similar velocities over similar projected distances from M31. We find a non-trivial relationship only at these velocities between the column densities (N) of all the ions and R, whereby N decreases with increasing R. Singly ionized species are only detected in the inner CGM of M31 at R<0.2Rvir. At R<0.8 Rvir, the covering fraction is close to unity for SiIII and CIV (fc~60%-97% at the 90% confidence level), but drops to fc<10-20% at R>Rvir. We show that the M31 CGM gas is bound, multiphase, predominantly ionized (i.e., HII>>HI), and becomes more highly ionized gas at larger R. We estimate using SiII, SiIII, and SiIV a CGM metal mass of at least 2x10^6 Msun and gas mass of >3x10^9(Zsun/Z) Msun within 0.2 Rvir, and possibly a factor ~10 larger within Rvir, implying substantial metal and gas masses in the CGM of M31. Compared with galaxies in the COS-Halos survey, the CGM of M31 appears to be quite typical for a L* galaxy.



قيم البحث

اقرأ أيضاً

Project AMIGA (Absorption Maps In the Gas of Andromeda) is a large ultraviolet Hubble Space Telescope program, which has assembled a sample of 43 QSOs that pierce the circumgalactic medium (CGM) of Andromeda (M31) from R=25 to 569 kpc (25 of them pro bing gas from 25 kpc to about the virial radius-Rvir = 300 kpc-of M31). Our large sample provides an unparalleled look at the physical conditions and distribution of metals in the CGM of a single galaxy using ions that probe a wide range of gas phases (Si II, Si III, Si IV, C II, C IV, and O VI, the latter being from the Far Ultraviolet Spectroscopic Explorer). We find that Si III and O VI have near unity covering factor maintained all the way out to 1.2Rvir and 1.9Rvir, respectively. We show that Si III is the dominant ion over Si II and Si IV at any R. While we do not find that the properties of the CGM of M31 depend strongly on the azimuth, we show that they change remarkably around 0.3-0.5Rvir, conveying that the inner regions of the CGM of M31 are more dynamic and have more complicated multi-phase gas-structures than at R>0.5Rvir. We estimate the metal mass of the CGM within Rvir as probed by Si II, Si III, and Si IV is 2x10^7 Msun and by O VI is >8x10^7 Msun, while the baryon mass of the 10^4-10^5.5 K gas is ~4x10^10 (Z/0.3 Zsun)^(-1) Msun within Rvir. We show that different zoom-in cosmological simulations of L* galaxies better reproduce the column density profile of O VI with R than Si III or the other studied ions. We find that observations of the M31 CGM and zoom-in simulations of L* galaxies have both lower ions showing higher column density dispersion and dependence on R than higher ions, indicating that the higher ionization structures are larger and/or more broadly distributed.
243 - David S. N. Rupke 2019
Ninety per cent of baryons are located outside galaxies, either in the circumgalactic or intergalactic medium. Theory points to galactic winds as the primary source of the enriched and massive circumgalactic medium. Winds from compact starbursts have been observed to flow to distances somewhat greater than ten kiloparsecs, but the circumgalactic medium typically extends beyond a hundred kiloparsecs. Here we report optical integral field observations of the massive but compact galaxy SDSS J211824.06+001729.4. The oxygen [O II] lines at wavelengths of 3726 and 3729 angstroms reveal an ionized outflow spanning 80 by 100 square kiloparsecs, depositing metal-enriched gas at 10,000 kelvin through an hourglass-shaped nebula that resembles an evacuated and limb-brightened bipolar bubble. We also observe neutral gas phases at temperatures of less than 10,000 kelvin reaching distances of 20 kiloparsecs and velocities of around 1,500 kilometres per second. This multi-phase outflow is probably driven by bursts of star formation, consistent with theory.
103 - Hsiao-Wen Chen 2016
This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.
The equivalent widths of MgII absorption in the circumgalactic medium (CGM) trace the global star formation rate up to $z<6$, are larger for star-forming galaxies than passively-evolving galaxies, and decrease with increasing distance from the galaxy . We delve further into the physics involved by investigating gas kinematics and cloud column density distributions as a function of galaxy color, redshift, and projected distance from the galaxy (normalized by galaxy virial radius, $D/R_{rm vir}$). For 39 isolated galaxies at $0.3<z_{rm gal}<1.0$, we have detected MgII absorption in high-resolution ($Delta vsimeq 6.6$ km/s) spectra of background quasars within a projected distance of $7<D<190$ kpc. We characterize the absorption velocity spread using pixel-velocity two-point correlation functions. Velocity dispersions and cloud column densities for blue galaxies do not differ with redshift nor with $D/R_{rm vir}$. This suggests that outflows continually replenish the CGM of blue galaxies with high velocity dispersion, large column density gas out to large distances. Conversely, absorption hosted by red galaxies evolves with redshift where the velocity dispersions (column densities) are smaller (larger) at $z_{rm gal}<0.656$. After taking into account larger possible velocities in more massive galaxies, we find that there is no difference in the velocity dispersions or column densities for absorption hosted by red galaxies with $D/R_{rm vir}$. Thus, a lack of outflows in red galaxies causes the CGM to become more quiescent over time, with lower velocity dispersions and larger column densities towards lower $z_{rm gal}$. The quenching of star formation appears to affect the CGM out to $D/R_{rm vir}=0.75$.
In this paper we present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the $sim70times30$ kpc$^2$ Ly$alpha$ halo around the radio galaxy 4C04.11 at $z = 4.5077$. High-redshift radio galaxies (HzRGs) are ho sted by some of the most massive galaxies known at any redshift and are unique markers of concomitant powerful active galactic nucleus (AGN) activity and star formation episodes. We map the emission and kinematics of the Ly$alpha$ across the halo as well as the kinematics and column densities of eight HI absorbing systems at $-3500 < Delta v < 0$ km s$^{-1}$. We find that the strong absorber at $Delta v sim 0,rm km,s^{-1}$ has a high areal coverage ($30times30$ kpc$^2$), being detected across a large extent of the Ly$alpha$ halo, a significant column density gradient along the southwest to northeast direction, and a velocity gradient along the radio jet axis. We propose that the absorbing structure, which is also seen in CIV and NV absorption, represents an outflowing metal-enriched shell driven by a previous AGN or star formation episode within the galaxy and is now caught up by the radio jet, leading to jet-gas interactions. These observations provide evidence that feedback from AGN in some of the most massive galaxies in the early Universe may play an important role in redistributing material and metals in their environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا