ترغب بنشر مسار تعليمي؟ اضغط هنا

The Circumgalactic Medium in Massive Halos

104   0   0.0 ( 0 )
 نشر من قبل Hsiao-Wen Chen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hsiao-Wen Chen




اسأل ChatGPT حول البحث

This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.



قيم البحث

اقرأ أيضاً

We outline theoretical predictions for extended emission from MgII, tracing cool ~10^4 K gas in the circumgalactic medium (CGM) of star-forming galaxies in the high-resolution TNG50 cosmological magnetohydrodynamical simulation. We synthesize surface brightness maps of this strong rest-frame ultraviolet metal emission doublet (2796, 2803), adopting the assumption that the resonant scattering of MgII can be neglected and connecting to recent and upcoming observations with the Keck/KCWI, VLT/MUSE, and BlueMUSE optical integral field unit spectrographs. Studying galaxies with stellar masses 7.5 < log(M*/M_sun) < 11 at redshifts z=0.3, 0.7, 1 and 2 we find that extended MgII halos in emission, similar to their Lyman-alpha counterparts, are ubiquitous across the galaxy population. Median surface brightness profiles exceed 10^-19 erg/s/cm^2/arcsec^2 in the central ~10s of kpc, and total halo MgII luminosity increases with mass for star-forming galaxies, reaching 10^40 erg/s for M* ~ 10^9.5 Msun. MgII halo sizes increase from a few kpc to > 20 kpc at the highest masses, and sizes are larger for halos in denser environments. MgII halos are highly structured, clumpy, and asymmetric, with isophotal axis ratio increasing with galaxy mass. Similarly, the amount and distribution of MgII emission depends on the star formation activity of the central galaxy. Kinematically, inflowing versus outflowing gas dominates the MgII luminosity at high and low galaxy masses, respectively, although the majority of MgII halo emission at z~0.7 traces near-equilibrium fountain flows and gas with non-negligible rotational support, rather than rapidly outflowing galactic winds.
We analyze new far-ultraviolet spectra of 13 quasars from the z~0.2 COS-Halos survey that cover the HI Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measu rements on the HI column densities NHI. We then apply a Monte-Carlo Markov Chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T~10^4K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining HI surface density with impact parameter Rperp (at >99.5%$ confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70+/-7%; (3) the metallicity distribution function of the cool CGM is unimodal with a median of 1/3 Z_Sun and a 95% interval from ~1/50 Z_Sun to over 3x solar. The incidence of metal poor (<1/100 Z_Sun) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining NHI (at >99.9% confidence) and, therefore, also with increasing Rperp. The high metallicity at large radii implies early enrichment; (5) A non-parametric estimate of the cool CGM gas mass is M_CGM_cool = 9.2 +/- 4.3 10^10 Msun, which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo.
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass halos hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, an isotropic streaming and diffusion along magnetic field lines, collisional and streaming losses, with constant parallel diffusivity $kappasim3times10^{29},mathrm{cm^2 s^{-1}}$ chosen to match $gamma$-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass halos at $zlesssim 1-2$. The gas in these CR-dominated halos differs significantly from runs without CRs: the gas is primarily cool (a few $sim10^{4},$K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the low and mid ions in this diffuse cool gas is dominated by photo-ionization, with O VI columns $gtrsim 10^{14.5},mathrm{cm^{-2}}$ at distances $gtrsim 150,mathrm{kpc}$. CR and thermal gas pressure are locally anti-correlated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same halos are primarily warm/hot ($Tgtrsim 10^{5},$K) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal actic medium, and metal-rich gas that is either ejected from galaxies by energetic feedback or stripped from infalling satellites. As such, the CGM is empirically multi-phased and complex in dynamics. Significant progress has been made in the past decade or so in observing the cosmic-ray/B-field, as well as various phases of the CGM. But basic questions remain to be answered. First, what are the energy, mass, and metal contents of the CGM? More specifically, how are they spatially distributed and partitioned in the different components? Moreover, how are they linked to properties of host galaxies and their global clustering and intergalactic medium environments? Lastly, what are the origin, state, and life-cycle of the CGM? This question explores the dynamics of the CGM. Here we illustrate how these questions may be addressed with multi-wavelength observations of the CGM.
The cycling of baryons in and out of galaxies is what ultimately drives galaxy formation and evolution. The circumgalactic medium (CGM) represents the interface between the interstellar medium and the cosmic web, hence its properties are directly sha ped by the baryon cycle. Although traditionally the CGM is thought to consist of warm and hot gas, recent breakthroughs are presenting a new scenario according to which an important fraction of its mass may reside in the cold atomic and molecular phase. This would represent fuel that is readily available for star formation, with crucial implications for feeding and feedback processes in galaxies. However, such cold CGM, especially in local galaxies where its projected size on sky is expected to be of several arcminutes, cannot be imaged by ALMA due to interferometric spatial scale filtering of large-scale structures. We show that the only way to probe the multiphase CGM including its coldest component is through a large (e.g. 50-m) single dish (sub-)mm telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا