ﻻ يوجد ملخص باللغة العربية
We study the critical points of the likelihood function over the Fermat hypersurface. This problem is related to one of the main problems in statistical optimization: maximum likelihood estimation. The number of critical points over a projective variety is a topological invariant of the variety and is called maximum likelihood degree. We provide closed formulas for the maximum likelihood degree of any Fermat curve in the projective plane and of Fermat hypersurfaces of degree 2 in any projective space. Algorithmic methods to compute the ML degree of a generic Fermat hypersurface are developed throughout the paper. Such algorithms heavily exploit the symmetries of the varieties we are considering. A computational comparison of the different methods and a list of the maximum likelihood degrees of several Fermat hypersurfaces are available in the last section.
We study the maximum likelihood degree (ML degree) of toric varieties, known as discrete exponential models in statistics. By introducing scaling coefficients to the monomial parameterization of the toric variety, one can change the ML degree. We sho
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical rin
In this note we look at the freeness for complex affine hypersurfaces. If $X subset mathbb{C}^n$ is such a hypersurface, and $D$ denotes the associated projective hypersurface, obtained by taking the closure of $X$ in $mathbb{P}^n$, then we relate fi
Here we prove that the Hilbert-Kunz mulitiplicity of a quadric hypersurface of dimension $d$ and odd characteristic $pgeq 2d-4$ is bounded below by $1+m_d$, where $m_d$ is the $d^{th}$ coefficient in the expansion of $mbox{sec}+mbox{tan}$. This prove
We study the variation of linear sections of hypersurfaces in $mathbb{P}^n$. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperpl