ترغب بنشر مسار تعليمي؟ اضغط هنا

Moduli of linear slices of high degree hypersurfaces

76   0   0.0 ( 0 )
 نشر من قبل Eric Riedl
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the variation of linear sections of hypersurfaces in $mathbb{P}^n$. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree $d$ hypersurface in $mathbb{P}^n$ vary maximally for $d geq n+3$. In the process, we generalize the classical Grauert-Mulich theorem about lines in projective space, both to $k$-planes in projective space and to free rational curves on arbitrary varieties.



قيم البحث

اقرأ أيضاً

We study the critical points of the likelihood function over the Fermat hypersurface. This problem is related to one of the main problems in statistical optimization: maximum likelihood estimation. The number of critical points over a projective vari ety is a topological invariant of the variety and is called maximum likelihood degree. We provide closed formulas for the maximum likelihood degree of any Fermat curve in the projective plane and of Fermat hypersurfaces of degree 2 in any projective space. Algorithmic methods to compute the ML degree of a generic Fermat hypersurface are developed throughout the paper. Such algorithms heavily exploit the symmetries of the varieties we are considering. A computational comparison of the different methods and a list of the maximum likelihood degrees of several Fermat hypersurfaces are available in the last section.
We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate cover ings of normal type (of the same polarization type). The above manifolds yield also a connected component of the open set of Teichmuller space consisting of Kahler complex structures.
We prove that the universal family of polarized K3 surfaces of degree 2 can be extended to a flat family of stable slc pairs $(X,epsilon R)$ over the toroidal compactification associated to the Coxeter fan. One-parameter degenerations of K3 surfaces in this family are described by integral-affine structures on a sphere with 24 singularities.
109 - Anand Patel 2016
We investigate the global variation of moduli of linear sections of a general hypersurface. We prove a generic Torelli result for a large proportion of cases, and we obtain a complete picture of the global variation of moduli of line slices of a general hypersurface.
89 - Martin Moeller 2007
We study closures of GL_2(R)-orbits on the total space of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyper elliptic locus or parameterize curves whose Jacobian has additional endomorphisms. This follows from a cohomological description of the tangent bundle to strata. For non-generic strata similar results can be shown by a case-by-case inspection. We also propose to study a notion of linear manifold that comprises Teichmueller curves, Hilbert modular surfaces and the ball quotients of Deligne and Mostow. Moreover, we give an explanation for the difference between Hilbert modular surfaces and Hilbert modular threefolds with respect to this notion of linearity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا