ترغب بنشر مسار تعليمي؟ اضغط هنا

Length-dependent thermal conductivity in suspended single-layer graphene

335   0   0.0 ( 0 )
 نشر من قبل Xiangfan Xu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, when temperature at 300K, thermal conductivity keeps increasing and remains logarithmic divergence with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene and provides fundamental understanding into thermal transport in two-dimensional materials.



قيم البحث

اقرأ أيضاً

Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate rials, are rare due to technical challenges. In this work, we demonstrate in-situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defects scatterings that decrease the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be a crystalline-amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with temperature and exhibits a peak near T~280K ($pm$10K) due to the Umklapp process. At low temperatures (T<140K), the temperature dependent thermal conductivity scales as ~T^{1.5}, suggesting that the main contribution to thermal conductance arises from flexural acoustic (ZA) phonons in suspended SLG. The $sigma$/A reaches a high value of 1.7$times10^5 T^{1.5}$ W/m^2K, which is approaching the expected ballistic phonon thermal conductance for two-dimensional graphene sheets. Our results not only clarify the ambiguity in the thermal conductance, but also demonstrate the potential of Cu-CVD graphene for heat related applications.
Using non-equilibrium molecular dynamics method(NEMD), we have found that the thermal conductivity of multilayer graphene nanoribbons monotonously decreases with the increase of the number of layers, such behavior can be attributed to the phonon reso nance effect of out-of-plane phonon modes. The reduction of thermal conductivity is found to be proportional to the layer size, which is caused by the increase of phonon resonance. Our results are in agreement with recent experiment on dimensional evolution of thermal conductivity in few layer graphene.
176 - Chengru Wang , Jie Guo , Lan Dong 2016
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer metho d, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm-1K-1(+141 Wm-1K-1/ -24 Wm-1K-1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.
Thermal properties of suspended single-layer graphene membranes are investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time $tau$ between the optical intensity and mecha nical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled tau, a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا