ﻻ يوجد ملخص باللغة العربية
We present 855 cataclysmic variable candidates detected by the Catalina Real-time Transient Survey (CRTS) of which at least 137 have been spectroscopically confirmed and 705 are new discoveries. The sources were identified from the analysis of five years of data, and come from an area covering three quarters of the sky. We study the amplitude distribution of the dwarf novae CVs discovered by CRTS during outburst, and find that in quiescence they are typically two magnitudes fainter compared to the spectroscopic CV sample identified by SDSS. However, almost all CRTS CVs in the SDSS footprint have ugriz photometry. We analyse the spatial distribution of the CVs and find evidence that many of the systems lie at scale heights beyond those expected for a Galactic thin disc population. We compare the outburst rates of newly discovered CRTS CVs with the previously known CV population, and find no evidence for a difference between them. However, we find that significant evidence for a systematic difference in orbital period distribution. We discuss the CVs found below the orbital period minimum and argue that many more are yet to be identified among the full CRTS CV sample. We cross-match the CVs with archival X-ray catalogs and find that most of the systems are dwarf novae rather than magnetic CVs.
Over six years of operation, the Catalina Real-time Transient Survey (CRTS) has identified 1043 cataclysmic variable (CV) candidates --- the largest sample of CVs from a single survey to date. Here we provide spectroscopic identification of 85 system
We present high speed photometric observations of 20 faint cataclysmic variables, selected from the Sloan Digital Sky Survey and Catalina catalogues. Measurements are given of 15 new directly measured orbital periods, including four eclipsing dwarf n
We report on the results from the first six months of the Catalina Real-time Transient Survey (CRTS). In order to search for optical transients with timescales of minutes to years, the CRTS analyses data from the Catalina Sky Survey which repeatedly
A sample of Cataclysmic Variables (CVs) is presented including spectroscopically identified 380 spectra of 245 objects, of which 58 CV candidates are new discoveries. The BaggingTopPush and the Random Forest algorithms are applied to the Fifth Data R
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables