ﻻ يوجد ملخص باللغة العربية
We report on the results from the first six months of the Catalina Real-time Transient Survey (CRTS). In order to search for optical transients with timescales of minutes to years, the CRTS analyses data from the Catalina Sky Survey which repeatedly covers twenty six thousand of square degrees on the sky. The CRTS provides a public stream of transients that are bright enough to be followed up using small telescopes. Since the beginning of the survey, all CRTS transients have been made available to astronomers around the world in real-time using HTML tables, RSS feeds and VOEvents. As part of our public outreach program the detections are now also available in KML through Google Sky. The initial discoveries include over 350 unique optical transients rising more than two magnitudes from past measurements. Sixty two of these are classified as supernovae, based on light curves, prior deep imaging and spectroscopic data. Seventy seven are due to cataclysmic variables (only 13 previously known), while an additional 100 transients were too infrequently sampled to distinguish between faint CVs and SNe. The remaining optical transients include AGN, Blazars, high proper motions stars, highly variable stars (such as UV Ceti stars) and transients of an unknown nature. Our results suggest that there is a large population of SNe missed by many current supernova surveys because of selection biases. These objects appear to be associated with faint host galaxies. We also discuss the unexpected discovery of white dwarf binary systems through dramatic eclipses.
We present 855 cataclysmic variable candidates detected by the Catalina Real-time Transient Survey (CRTS) of which at least 137 have been spectroscopically confirmed and 705 are new discoveries. The sources were identified from the analysis of five y
Over six years of operation, the Catalina Real-time Transient Survey (CRTS) has identified 1043 cataclysmic variable (CV) candidates --- the largest sample of CVs from a single survey to date. Here we provide spectroscopic identification of 85 system
Modern radio interferometers such as the LOw Frequency ARray (LOFAR) are capable of producing data at hundreds of gigabits to terabits per second. This high data rate makes the analysis of radio data cumbersome and computationally expensive. While hi
We present high speed photometric observations of 20 faint cataclysmic variables, selected from the Sloan Digital Sky Survey and Catalina catalogues. Measurements are given of 15 new directly measured orbital periods, including four eclipsing dwarf n
We present the first results from the ALHAMBRA survey. ALHAMBRA will cover a relatively wide area (4 square degrees) using a purposely-designed set of 20 medium-band filters, down to an homogeneous magnitude limit AB~25 in most of them, adding also d