ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically tunable plasma excitations in AA-stacking multilayer graphene

120   0   0.0 ( 0 )
 نشر من قبل Jhao-Ying Wu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic light scattering or electron-energy-loss spectroscopy.



قيم البحث

اقرأ أيضاً

The lower-symmetry trilayer AAB-stacked graphene exhibits rich electronic properties and thus diverse Coulomb excitations. Three pairs of unusual valence and conduction bands create nine available interband excitations for the undoped case, in which the imaginary (real) part of the polarizability shows 1D square root asymmetric peaks and 2D shoulder structures (pairs of antisymmetric peaks and logarithm type symmetric peaks). Moreover, the low frequency acoustic plasmon, being revealed as a prominent peak in the energy loss spectrum, can survive in a narrow gap system with the large-density-of-states from the valence band. This type of plasmon mode is similar to that in a narrow gap carbon nanotube. However, the decisive mechanism governing this plasmon is the intraband conduction state excitations. Its frequency, intensity and critical momentum exhibit a non-monotonic dependence on the Fermi energy. The well-defined electron-hole excitation boundaries and the higher frequency optical plasmons are transformed by varying the Fermi energy. There remain substantial differences between the electronic properties of trilayer AAB, ABC, AAA and ABA graphene stackings.
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key materia l in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. While the twist angle-dependence of these properties has been explored, direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines a functional twisted bilayer graphene device using in-operando angle-resolved photoemission with a nano-focused light spot. A twist angle of 12.2$^{circ}$ is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (R G), which has been receiving increasing attention in the last years. In both natural and artificial samples however, multilayer stacked Bernal graphene (BG) occurs more frequently, making it desirable to determine what is their relative stability and under which conditions RG might be favored. Here, we study the energetics of BG and RG in bulk and also multilayer stacked graphene using first-principles calculations. It is shown that the electronic temperature, not accounted for in previous studies, plays a crucial role in determining which phase is preferred. We also show that the low energy states at room temperature consist of BG, RG and mixed BG-RG systems with a particular type of interface. Energies of all stacking sequences (SSs) are calculated for N = 12 layers, and an Ising model is used to fit them, which can be used for larger N as well. In this way, the ordering of low energy SSs can be determined and analyzed in terms of a few parameters. Our work clarifies inconsistent results in the literature, and sets the basis to studying the effect of external factors on the stability of multilayer graphene systems in first principles calculations.
Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking orders that are energetically comparable but may significantly differ in terms of electronic structures, e.g. magnetism. Inspired by several recent experiments showing interlayer anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling results from a new stacking order with the C2/m space group symmetry, rather than the graphene-like one with R3 as previously believed. Moreover, we demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are governed by two different mechanisms, namely ferromagnetic super-exchange and direct-exchange interactions, which are largely decoupled because of their significant difference in strength at the strong- and weak-interaction limits. This allows the much weaker interlayer magnetic coupling to be more feasibly tuned by stacking orders solely. Given the fact that interlayer magnetic properties can be altered by changing crystal structure with different stacking orders, our work opens a new paradigm for tuning interlayer magnetic properties with the freedom of stacking order in two dimensional layered materials.
Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether and to what degree their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical co-dopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition, with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac fermions in otherwise semiconducting graphene-like nanoribbons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا