ﻻ يوجد ملخص باللغة العربية
We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an $l_1^+$-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation.
Superpixels have become prevalent in computer vision. They have been used to achieve satisfactory performance at a significantly smaller computational cost for various tasks. People have also combined superpixels with Markov random field (MRF) models
We obtain new restrictions on the linear programming bound for sphere packing, by optimizing over spaces of modular forms to produce feasible points in the dual linear program. In contrast to the situation in dimensions 8 and 24, where the linear pro
The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) r
We give a characterization result for the integrality gap of the natural linear programming relaxation for the vertex cover problem. We show that integrality gap of the standard linear programming relaxation for any graph G equals $left(2-frac{2}{chi
Goldreich suggested candidates of one-way functions and pseudorandom generators included in $mathsf{NC}^0$. It is known that randomly generated Goldreichs generator using $(r-1)$-wise independent predicates with $n$ input variables and $m=C n^{r/2}$