ﻻ يوجد ملخص باللغة العربية
A general algorithm to construct particle trajectories in 1+1 dimensional canonical relativistic models is presented. The method is a generalization of the construction used in Ruijsenaars-Schneider models and provides a simple proof of the fact that the latter satisfies the world-line conditions granting proper physical Poincare invariance. The 2-particle case for the rational Ruijsenaars-Schneider model is worked out explicitly. It is shown that the particle coordinates do not Poisson commute, as required by the no-interaction theorem of Currie, Jordan and Sudarshan.
We derive a Hamiltonian structure for the $N$-particle hyperbolic spin Ruijsenaars-Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a facto
We conjecture the quantum analogue of the classical trace formulae for the integrals of motion of the quantum hyperbolic Ruijsenaars-Schneider model. This is done by departing from the classical construction where the corresponding model is obtained
We suggest a field extension of the classical elliptic Ruijsenaars-Schneider model. The model is defined in two different ways which lead to the same result. The first one is via the trace of a chain product of $L$-matrices which allows one to introd
A class of explicitly integrable models of 1+1 dimensional dilaton gravity coupled to scalar fields is described in some detail. The equations of motion of these models reduce to systems of the Liouville equations endowed with energy and momentum con
We study the application of AdS/CFT duality to longitudinal boost invariant Bjorken expansion of QCD matter produced in ultrarelativistic heavy ion collisions. As the exact (1+4)-dimensional bulk solutions for the (1+3)-dimensional boundary theory ar