ﻻ يوجد ملخص باللغة العربية
A class of explicitly integrable models of 1+1 dimensional dilaton gravity coupled to scalar fields is described in some detail. The equations of motion of these models reduce to systems of the Liouville equations endowed with energy and momentum constraints. The general solution of the equations and constraints in terms of chiral moduli fields is explicitly constructed and some extensions of the basic integrable model are briefly discussed. These models may be related to high dimensional supergravity theories but here they are mostly considered independently of such interpretations. A brief review of other integrable models of two-dimensional dilaton gravity is also given.
A new class of integrable two-dimensional dilaton gravity theories, in which scalar matter fields satisfy the Toda equations, is proposed. The simplest case of the Toda system is considered in some detail, and on this example we outline how the gener
Integrable models of dilaton gravity coupled to electromagnetic and scalar matter fields in dimensions 1+1 and 0+1 are briefly reviewed. The 1+1 dimensional integrable models are either solved in terms of explicit quadratures or reduced to the classi
General properties of a class of two-dimensional dilaton gravity (DG) theories with multi-exponential potentials are studied and a subclass of these theories, in which the equations of motion reduce to Toda and Liouville equations, is treated in deta
In these notes we will review some approaches to 2+1 dimensional gravity and the way it is coupled to point-particles. First we look into some exact static and stationary solutions with and without cosmological constant. Next we study the polygon app
We study the application of AdS/CFT duality to longitudinal boost invariant Bjorken expansion of QCD matter produced in ultrarelativistic heavy ion collisions. As the exact (1+4)-dimensional bulk solutions for the (1+3)-dimensional boundary theory ar