ترغب بنشر مسار تعليمي؟ اضغط هنا

Better bitmap performance with Roaring bitmaps

244   0   0.0 ( 0 )
 نشر من قبل Daniel Lemire
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bitmap indexes are commonly used in databases and search engines. By exploiting bit-level parallelism, they can significantly accelerate queries. However, they can use much memory, and thus we might prefer compressed bitmap indexes. Following Oracles lead, bitmaps are often compressed using run-length encoding (RLE). Building on prior work, we introduce the Roaring compressed bitmap format: it uses packed arrays for compression instead of RLE. We compare it to two high-performance RLE-based bitmap encoding techniques: WAH (Word Aligned Hybrid compression scheme) and Concise (Compressed `n Composable Integer Set). On synthetic and real data, we find that Roaring bitmaps (1) often compress significantly better (e.g., 2 times) and (2) are faster than the compressed alternatives (up to 900 times faster for intersections). Our results challenge the view that RLE-based bitmap compression is best.



قيم البحث

اقرأ أيضاً

Compressed bitmap indexes are used in databases and search engines. Many bitmap compression techniques have been proposed, almost all relying primarily on run-length encoding (RLE). However, on unsorted data, we can get superior performance with a hy brid compression technique that uses both uncompressed bitmaps and packed arrays inside a two-level tree. An instance of this technique, Roaring, has recently been proposed. Due to its good performance, it has been adopted by several production platforms (e.g., Apache Lucene, Apache Spark, Apache Kylin and Druid). Yet there are cases where run-length encoded bitmaps are smaller than the original Roaring bitmaps---typically when the data is sorted so that the bitmaps contain long compressible runs. To better handle these cases, we build a new Roaring hybrid that combines uncompressed bitmaps, packed arrays and RLE compressed segments. The result is a new Roaring format that compresses better. Overall, our new implementation of Roaring can be several times faster (up to two orders of magnitude) than the implementations of traditional RLE-based alternatives (WAH, Concise, EWAH) while compressing better. We review the design choices and optimizations that make these good results possible.
Compressed bitmap indexes are used in systems such as Git or Oracle to accelerate queries. They represent sets and often support operations such as unions, intersections, differences, and symmetric differences. Several important systems such as Elast icsearch, Apache Spark, Netflixs Atlas, LinkedIns Pinot, Metamarkets Druid, Pilosa, Apache Hive, Apache Tez, Microsoft Visual Studio Team Services and Apache Kylin rely on a specific type of compressed bitmap index called Roaring. We present an optimized software library written in C implementing Roaring bitmaps: CRoaring. It benefits from several algorithms designed for the single-instruction-multiple-data (SIMD) instructions available on commodity processors. In particular, we present vectorized algorithms to compute the intersection, union, difference and symmetric difference between arrays. We benchmark the library against a wide range of competitive alternatives, identifying weaknesses and strengths in our software. Our work is available under a liberal open-source license.
Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. These techniques are sensitive to the order of the rows: a simple lexicographical sort can divide the index size by 9 and make indexes several times faster. We investigate row-reordering heuristics. Simply permuting the columns of the table can increase the sorting efficiency by 40%. Secondary contributions include efficient algorithms to construct and aggregate bitmaps. The effect of word length is also reviewed by constructing 16-bit, 32-bit and 64-bit indexes. Using 64-bit CPUs, we find that 64-bit indexes are slightly faster than 32-bit indexes despite being nearly twice as large.
194 - Owen Kaser , Daniel Lemire 2014
Bitmap indexes are routinely used to speed up simple aggregate queries in databases. Set operations such as intersections, unions and complements can be represented as logical operations (AND, OR, NOT). However, less is known about the application of bitmap indexes to more advanced queries. We want to extend the applicability of bitmap indexes. As a starting point, we consider symmetric Boolean queries (e.g., threshold functions). For example, we might consider stores as sets of products, and ask for products that are on sale in 2 to 10 stores. Such symmetric Boolean queries generalize intersection, union, and T-occurrence queries. It may not be immediately obvious to an engineer how to use bitmap indexes for symmetric Boolean queries. Yet, maybe surprisingly, we find that the best of our bitmap-based algorithms are competitive with the state-of-the-art algorithms for important special cases (e.g., MergeOpt, MergeSkip, DivideSkip, ScanCount). Moreover, unlike the competing algorithms, the result of our computation is again a bitmap which can be further processed within a bitmap index. We review algorithmic design issues such as the aggregation of many compressed bitmaps. We conclude with a discussion on other advanced queries that bitmap indexes might be able to support efficiently.
149 - Owen Kaser , Daniel Lemire 2014
Compressed bitmap indexes are used to speed up simple aggregate queries in databases. Indeed, set operations like intersections, unions and complements can be represented as logical operations (AND,OR,NOT) that are ideally suited for bitmaps. However , it is less obvious how to apply bitmaps to more advanced queries. For example, we might seek products in a store that meet some, but maybe not all, criteria. Such threshold queries generalize intersections and unions; they are often used in information-retrieval and data-mining applications. We introduce new algorithms that are sometimes three orders of magnitude faster than a naive approach. Our work shows that bitmap indexes are more broadly applicable than is commonly believed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا