ﻻ يوجد ملخص باللغة العربية
Bitmap indexes are routinely used to speed up simple aggregate queries in databases. Set operations such as intersections, unions and complements can be represented as logical operations (AND, OR, NOT). However, less is known about the application of bitmap indexes to more advanced queries. We want to extend the applicability of bitmap indexes. As a starting point, we consider symmetric Boolean queries (e.g., threshold functions). For example, we might consider stores as sets of products, and ask for products that are on sale in 2 to 10 stores. Such symmetric Boolean queries generalize intersection, union, and T-occurrence queries. It may not be immediately obvious to an engineer how to use bitmap indexes for symmetric Boolean queries. Yet, maybe surprisingly, we find that the best of our bitmap-based algorithms are competitive with the state-of-the-art algorithms for important special cases (e.g., MergeOpt, MergeSkip, DivideSkip, ScanCount). Moreover, unlike the competing algorithms, the result of our computation is again a bitmap which can be further processed within a bitmap index. We review algorithmic design issues such as the aggregation of many compressed bitmaps. We conclude with a discussion on other advanced queries that bitmap indexes might be able to support efficiently.
Compressed bitmap indexes are used in databases and search engines. Many bitmap compression techniques have been proposed, almost all relying primarily on run-length encoding (RLE). However, on unsorted data, we can get superior performance with a hy
Bitmap indexes are commonly used in databases and search engines. By exploiting bit-level parallelism, they can significantly accelerate queries. However, they can use much memory, and thus we might prefer compressed bitmap indexes. Following Oracles
Compressed bitmap indexes are used in systems such as Git or Oracle to accelerate queries. They represent sets and often support operations such as unions, intersections, differences, and symmetric differences. Several important systems such as Elast
Bitmap indexes are frequently used to index multidimensional data. They rely mostly on sequential input/output. Bitmaps can be compressed to reduce input/output costs and minimize CPU usage. The most efficient compression techniques are based on run-
Threshold queries are an important class of queries that only require computing or counting answers up to a specified threshold value. To the best of our knowledge, threshold queries have been largely disregarded in the research literature, which is