ﻻ يوجد ملخص باللغة العربية
In the experimental electroluminescence (EL) spectra of light-emitting diodes (LEDs) based on N-polar (In,Ga)N/GaN nanowires (NWs), we observed a double peak structure. The relative intensity of the two peaks evolves in a peculiar way with injected current. Spatially and spectrally resolved EL maps confirmed the presence of two main transitions in the spectra, and suggested that they are emitted by the majority of single nano-LEDs. In order to elucidate the physical origin of this effect, we performed theoretical calculations of the strain, electric field, and charge density distributions both for planar LEDs and NW-LEDs. On this basis, we simulated also the EL spectra of these devices, which exhibit a double peak structure for N-polar heterostructures, both in the NW and the planar case. In contrast, this feature is not observed when Ga-polar planar LEDs are simulated. We found that the physical origin of the double peak structure is a stronger quantum-confined Stark effect occurring in the first and last quantum well of the N-polar heterostructures. The peculiar evolution of the relative peak intensities with injected current, seen only in the case of the NW-LED, is attributed to the three-dimensional strain variation resulting from elastic relaxation at the free sidewalls of the NWs. Therefore, this study provides important insights on the working principle of N-polar LEDs based on both planar and NW heterostructures.
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy
Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have
We present the combined analysis of the electroluminescence (EL) as well as the current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecul
We employ three dimensional x-ray coherent diffraction imaging to map the lattice strain distribution, and to probe the elastic properties of a single crystalline Ni (001) nanowire grown vertically on an amorphous Si02 || Si substrate. The reconstruc
We present a systematic study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial (In,Ga)N/GaN nanowire heterostructures. We employ and evaluate analytical and numerical approa