ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the back-scattering properties of an array of atoms that is evanescently coupled to an optical nanofiber in the strongly non-paraxial regime. We observe that the power and the polarization of the back-scattered light depend on the nanofiber-guided excitation field in a way that significantly deviates from the predictions of a simple model based on two-level atoms and a scalar waveguide. Even though it has been widely used in previous experimental and theoretical studies of waveguide-coupled quantum emitters, this simple model is thus in general not adequate even for a qualitative description of such systems. We develop an ab initio model which includes the multi-level structure of the atoms and the full vectorial properties of the guided field and find very good agreement with our data.
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix m
We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substant
Laser cooled lanthanide atoms are ideal candidates with which to study strong and unconventional quantum magnetism with exotic phases. Here, we use state-of-the-art closed-coupling simulations to model quantum magnetism for pairs of ultracold spin-6
We investigated non-equilibrium atomic dynamics in a moving optical lattice via observation of atomic resonance fluorescence spectrum. A three-dimensional optical lattice was generated in a phase-stabilized magneto-optical trap (MOT) and the lattice
We present a scheme for generating and manipulating three-mode squeezed states with genuine tripartite entanglement by injecting single-mode squeezed light into an array of coupled optical waveguides. We explore the possibility to selectively generat