ﻻ يوجد ملخص باللغة العربية
We investigated non-equilibrium atomic dynamics in a moving optical lattice via observation of atomic resonance fluorescence spectrum. A three-dimensional optical lattice was generated in a phase-stabilized magneto-optical trap (MOT) and the lattice was made to move by introducing a detuning between the counter-propagating trap lasers. A non-equilibrium steady states (NESSs) of atoms was then established in the hybrid of the moving optical lattice and the surrounding MOT. A part of atoms were localized and transported in the moving optical lattice and the rest were not localized in the lattice while trapped as a cold gas in the MOT. These motional states coexisted with continuous transition between them. As the speed of the lattice increased, the population of the non-localized state increased in a stepwise fashion due to the existence of bound states at the local minima of the lattice potential. A deterministic rate-equation model for atomic populations in those motional states was introduced in order to explain the experimental results. The model calculations then well reproduced the key features of the experimental observations, confirming the existence of an NESS in the cold atom system.
An accurate measurement of the bunching of photons in the fluorescent emission from an ultracold ensemble of thermal 87Rb atoms in a steady-state magneto-optical trap is presented. Time-delayed-intensity-interferometry (TDII) performed with a 5-nanos
We have observed a distance-dependent absorption linewidth of cold $^{87}$Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was c
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnet
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes.