ﻻ يوجد ملخص باللغة العربية
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. The variability of BALs can help us understand the structure, evolution, and basic physical properties of the outflows. Here we report on our first results from an ongoing BAL monitoring campaign of a sample of 24 luminous quasars at redshifts 1.2<z<2.9, focusing on C IV 1549 BAL variability in two different time intervals: 4 to 9 months (short-term) and 3.8 to 7.7 years (long-term) in the quasar rest-frame. We find that 39% (7/18) of the quasars varied in the short-term, whereas 65% (15/23) varied in the long-term, with a larger typical change in strength in the long-term data. The variability occurs typically in only portions of the BAL troughs. The components at higher outflow velocities are more likely to vary than those at lower velocities, and weaker BALs are more likely to vary than stronger BALs. The fractional change in BAL strength correlates inversely with the strength of the BAL feature, but does not correlate with the outflow velocity. Both the short-term and long-term data indicate the same trends. The observed behavior is most readily understood as a result of the movement of clouds across the continuum source. If the crossing speeds do not exceed the local Keplerian velocity, then the observed short-term variations imply that the absorbers are <6 pc from the central quasar.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure,
We present results of our time variability studies of Mg II and Al III absorption lines in a sample of 22 Low Ionization Broad Absorption Line QSOs (LoBAL QSOs) at 0.2 <= zem <= 2.1 using the 2m telescope at IUCAA Girawali Observatory over a time-sca
Results of a long-term monitoring ($gtrsim 10$ years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the H$alpha$ and H$beta$ profile variations during the mon
Broad absorption lines (BALs) in quasar spectra are prominent signatures of high-velocity outflows, which might be present in all quasars and could be a major contributor to feedback to galaxy evolution. Studying the variability in these BALs allows
Broad absorption lines (BALs) in quasar spectra indicate high-velocity outflows that may be present in all quasars and could be an important contributor to feedback to their host galaxies. Variability studies of BALs help illuminate the structure, ev